...
首页> 外文期刊>European Polymer Journal >The nature of the chain-length dependence of the propagation rate coefficient and its effect on the kinetics of free-radical polymerization. 1. Small-molecule studies
【24h】

The nature of the chain-length dependence of the propagation rate coefficient and its effect on the kinetics of free-radical polymerization. 1. Small-molecule studies

机译:链长对传播速率系数的依赖性及其对自由基聚合动力学的影响。 1.小分子研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper we summarize and analyze the currently available small-molecule data, both experimental and theoretical, that is relevant to chain-length-dependent propagation in free-radical polymerization (FRP). We do this in order to appreciate the nature of chain-length-dependent propagation, because workers are becoming increasingly cognizant of its necessity in reaching a complete understanding of FRP kinetics. We show that studies of addition in small-molecule (model) systems support a chain-length dependence (at short chain lengths i) which is described by the following functional form, which therefore can be said to be physically realistic: k(p)(i)/k(p) = C-1 exp[- ln 2 x (i - 1)/i(1/2)] + 1, where the values of C-1 and i(1/2) are of the order of 10 and 1, respectively. These results are supported by transition state theory, which predicts a very similar behavior for the Arrhenius frequency factor. We illustrate that in systems with low number-average degree of polymerization (DPn), this chain-length dependence can dramatically affect the observed (chain-length-averaged) propagation rate coefficient < k(p)>, which can be significantly higher than the long chain value, k(p). However, this effect is only observed if the activation energy for the first radical addition is similar to that for propagation. In the case that the former is significantly higher (e.g., when choosing a less than optimal initiator or in the case of retardative chain transfer), the chain-length-dependent propagation predicted by our model will not be observed, and in fact a significant lowering of < k(p)> can in cases be expected up to relatively high DPn. (c) 2005 Elsevier Ltd. All rights reserved.
机译:在本文中,我们总结和分析了目前可用的小分子数据,无论是实验数据还是理论数据,都与自由基聚合(FRP)中依赖链长的传播有关。我们这样做是为了了解依赖链长的传播的性质,因为工人越来越认识到这种传播对于完全了解FRP动力学的必要性。我们表明,在小分子(模型)系统中的加成研究支持链长相关性(在短链长i处),其由以下功能形式描述,因此可以说是物理上现实的:k(p) (i)/ k(p)= C-1 exp [-ln 2 x(i-1)/ i(1/2)] + 1,其中C-1和i(1/2)的值是分别为10和1的顺序。这些结果得到过渡态理论的支持,该理论预测了Arrhenius频率因子的行为非常相似。我们说明了在低数均聚合度(DPn)的系统中,这种链长依赖性会显着影响观察到的(链长平均)传播速率系数,该系数可能大大高于长链值k(p)。但是,只有在第一次自由基加成的活化能与扩散的活化能相似时,才能观察到这种效果。在前者明显较高的情况下(例如,当选择小于最佳引发剂的情况下或在阻性链转移的情况下),将不会观察到由我们的模型预测的依赖链长的传播,实际上,在某些情况下,可以降低直至达到较高的DPn。 (c)2005 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号