首页> 外文期刊>Boundary-layer Meteorology >Nonlinear Formulation of the Bulk Surface Stress over Breaking Waves: Feedback Mechanisms from Air-flow Separation
【24h】

Nonlinear Formulation of the Bulk Surface Stress over Breaking Waves: Feedback Mechanisms from Air-flow Separation

机译:破碎波上的体表应力的非线性公式:气流分离的反馈机制

获取原文
获取原文并翻译 | 示例
           

摘要

Historically, our understanding of the air-sea surface stress has been derived from engineering studies of turbulent flows over flat solid surfaces, and more recently, over rigid complex geometries. Over the ocean however, the presence of a free, deformable, moving surface gives rise to a more complicated drag formulation. In fact, within the constant-stress turbulent atmospheric boundary layer over the ocean, the total air-sea stress not only includes the traditional turbulent and viscous components but also incorporates surface-wave effects such as wave growth or decay, air-flow separation, and surface separation in the form of sea-spray droplets. Because each individual stress component depends on and alters the sea state, a simple linear addition of all stress components is too simplistic. In this paper we present a model of the air-sea surface stress that incorporates air-flow separation and its effects on the other stress components, such as a reduction of the surface viscous stress in theseparated region as suggested by recent measurements. Naturally, the inclusion of these effects leads to a non-linear stress formulation. This model, which uses a variable normalized dissipation rate of breaking waves and normalized length of the separation bubble, reproduces the observed features of the drag coefficient from low to high wind speeds despite extrapolating empirical wave spectra and breaking wave statistics beyond known limits. The model shows the saturation of the drag coefficient at high wind speeds for both field and laboratory fetches, suggesting that air-flow separation over ocean waves and its accompanying effects may play a significant role in the physics of the air-sea stress, at least at high wind speeds.
机译:从历史上看,我们对海-海表面应力的理解源自对平坦固体表面上湍流的工程研究,而最近对刚性复杂几何形状的湍流进行了工程研究。然而,在海洋上,自由,可变形,运动的表面的存在导致了更复杂的阻力公式。实际上,在海洋上的恒定应力湍流大气边界层中,总的海海应力不仅包括传统的湍流和粘性成分,而且还包括诸如波浪的生长或衰减,气流分离,和以海雾状液滴的形式进行表面分离。因为每个单独的应力分量都取决于并改变海况,所以所有应力分量的简单线性加法过于简单。在本文中,我们提出了一种海-海表面应力模型,该模型结合了气流分离及其对其他应力分量的影响,如最近的测量结果表明,在这些分隔的区域中降低了表面粘性应力。自然地,这些效应的包含导致非线性应力公式。该模型使用可变的标准化的破波耗散率和标准化的分离气泡长度,尽管推断出经验波谱和破波统计数据超出已知范围,但仍再现了从低风速到高风速的观测阻力特征。该模型显示了在野外风和实验室风中高风速下阻力系数的饱和度,这表明海浪上的气流分离及其伴随效应至少在空气-海应力物理学中起着重要作用。在高风速下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号