首页> 外文期刊>International Journal of Radiation Biology: Covering the Physical, Chemical, Biological, and Medical Effects of Ionizing and Non-ionizing Radiations >Reactions of 5-methylcytosine cation radicals in DNA and model systems: Thermal deprotonation from the 5-methyl group vs. excited state deprotonation from sugar
【24h】

Reactions of 5-methylcytosine cation radicals in DNA and model systems: Thermal deprotonation from the 5-methyl group vs. excited state deprotonation from sugar

机译:DNA和模型系统中5-甲基胞嘧啶阳离子自由基的反应:5-甲基的热去质子与糖的激发态去质子

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose: To study the formation and subsequent reactions of the 5-methyl-2′-deoxycytidine cation radical (5-Me-2′- dC?+) in nucleosides and DNA-oligomers and compare to one-electron oxidized thymidine. Materials and methods: Employing electron spin resonance (ESR), cation radical formation and its reactions were investigated in 5-Me-2′-dC, thymidine (Thd) and their derivatives, in fully double-stranded (ds) d[GC*GC*GC*GC*]2 and in the 5-Me-C/A mismatched, d[GGAC*AAGC:CCTAATCG], where C* = 5-Me-C. Results: We report 5-Me-2′-dC?+ production by one-electron oxidation of 5-Me-2′-dC by Cl2?- via annealing in the dark at 155 K. Progressive annealing of 5-Me-2′-dC?+ at 155 K produces the allylic radical (C-CH2?). However, photoexcitation of 5-Me-2′-dC?+ by 405 nm laser or by photoflood lamp leads to only C3′? formation. Photoexcitation of N3-deprotonated thyminyl radical in Thd and its 5′-nucleotides leads to C3′? formation but not in 3′-TMP which resulted in the allylic radical (U-CH2?) and C5′? production. For excited 5-Me-2′,3′- ddC?+, absence of the 3′-OH group does not prevent C3′? formation. For d[GC*GC*GC*GC*]2 and d[GGAC*AAGC:CCTAATCG], intra-base paired proton transferred form of G cation radical (G(N1-H)?: C(+ H+)) is found with no observable 5-Me-2′-dC?+ formation. Photoexcitation of (G(N1-H)?:C(+ H+)) in d[GC*GC*GC*GC*]2 produced only C1′? and not the expected photoproducts from 5-Me-2′-dC?+. However, photoexcitation of (G(N1-H)?:C(+ H+)) in d[GGAC*AAGC:CCTAATCG] led to C5′? and C1′? formation. Conclusions: C-CH2? formation from 5-Me-2′-dC?+ occurs via ground state deprotonation from C5-methyl group on the base. In the excited 5-Me-2′-dC?+ and 5-Me-2′,3′- ddC?+, spin and charge localization at C3′ followed by deprotonation leads to C3′? formation. Thus, deprotonation from C3′ in the excited cation radical is kinetically controlled and sugar C-H bond energies are not the only controlling factors in these deprotonations.
机译:目的:研究5-甲基-2'-脱氧胞苷阳离子自由基(5-Me-2'-dCα+)在核苷和DNA寡聚体中的形成和随后的反应,并将其与单电子氧化胸苷进行比较。材料和方法:利用电子自旋共振(ESR),在全双链(ds)d [GC *]中的5-Me-2'-dC,胸苷(Thd)及其衍生物中研究了阳离子自由基的形成及其反应GC * GC * GC *] 2和5-Me-C / A不匹配的d [GGAC * AAGC:CCTAATCG],其中C * = 5-Me-C。结果:我们报告了通过在155 K的黑暗中进行退火,通过Cl2α-对5-Me-2'-dC进行单电子氧化生成5-Me-2'-dCα+。5-Me-2逐步退火在155K′′-dC 2+产生烯丙基(C-CH 2 2)。但是,用405nm激光或光泛光灯对5-Me-2′-dC 2+的光激发只导致C 3′′。编队。 Thd及其5'核苷酸中N3去质子化的胸腺嘧啶基的光激发导致C3'?形成但不形成3'-TMP,导致烯丙基(U-CH2?)和C5'?生产。对于激发的5-Me-2′,3′-ddC2 +,不存在3′-OH基团不能阻止C3′′。编队。对于d [GC * GC * GC * GC *] 2和d [GGAC * AAGC:CCTAATCG],G阳离子自由基(G(N1-H)?: C(+ H +))的碱基对内质子转移形式为没有观察到5-Me-2'-dC2 +的形成。 d [GC * GC * GC * GC * GC *] 2中的(G(N1-H)α:C(+ H +))的光激发仅产生C1'?而不是5-Me-2'-dC2 +的预期光产物。然而,d [GGAC * AAGC:CCTAATCG]中的(G(N1-H)α:C(+ H +))的光激发导致C5'?和C1'?编队。结论:C-CH2? 5-Me-2'-dC2 +的形成是通过基上C5-甲基的基态去质子化而发生的。在激发的5-Me-2'-dC2 +和5-Me-2',3'-ddC2 +中,自旋和电荷定位在C3',然后去质子化,导致C3'?编队。因此,从动力学上控制了在被激发的阳离子自由基中从C3'脱质子化,并且糖C-H键能量不是这些脱质子化的唯一控制因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号