首页> 外文期刊>International journal of bifurcation and chaos in applied sciences and engineering >Turing bifurcation in a human migration model of scheurle-seydel type
【24h】

Turing bifurcation in a human migration model of scheurle-seydel type

机译:Scheurle-seydel类型的人类迁移模型中的图灵分叉

获取原文
获取原文并翻译 | 示例

摘要

The main goal of this paper is to continue the investigations of the important system proposed by [Scheurle & Seydel, 2000] and modified by [Sándor, 2003]. I consider spatio-temporal models for the behavior of students in graduate programs at neighboring universities as systems of ODE which describe two-identical patch-two-species systems linked by migration, where the phenomenon of the Turing bifurcation occurs. It is assumed in the model that the per capita migration rate of each individual is influenced not only by its own (Fickian) but also by the other densities, i.e. there is cross diffusion present. We study the conditions of the existence and stability properties of the equilibrium solutions in a kinetic model (no migration). We will show that analytically at a critical value of a parameter a Turing bifurcation takes place: a spatially nonhomogenous solution (pattern) arises. A numerical example is also included.
机译:本文的主要目的是继续研究由[Scheurle&Seydel,2000]提出并由[Sándor,2003]修改过的重要系统。我将邻国大学研究生课程中学生行为的时空模型视为ODE系统,该系统描述了由迁移联系在一起的,具有相同图灵分叉现象的两种相同的补丁程序,两种系统。在模型中,假设每个人的人均迁移率不仅受其自身(菲克)的影响,还受其他密度的影响,即存在交叉扩散。我们研究动力学模型(无迁移)中平衡解的存在性和稳定性的条件。我们将显示,在参数的临界值处进行分析时会发生图灵分叉:出现空间上不均匀的解(模式)。数值示例也包括在内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号