首页> 外文期刊>International journal of applied earth observation and geoinformation >Forest cover classification using Landsat ETM+ data and time series MODIS NDVI data
【24h】

Forest cover classification using Landsat ETM+ data and time series MODIS NDVI data

机译:使用Landsat ETM +数据和时间序列MODIS NDVI数据进行森林覆盖分类

获取原文
获取原文并翻译 | 示例

摘要

Forest cover plays a key role in climate change by influencing the carbon stocks, the hydrological cycle and the energy balance. Forest cover information can be determined from fine-resolution data, such as Landsat Enhanced Thematic Mapper Plus (ETM+). However, forest cover classification with fine-resolution data usually uses only one temporal data because successive data acquirement is difficult. It may achieve mis-classification result without involving vegetation growth information, because different vegetation types may have the similar spectral features in the fine-resolution data. To overcome these issues, a forest cover classification method using Landsat ETM+ data appending with time series Moderate-resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data was proposed. The objective was to investigate the potential of temporal features extracted from coarse-resolution time series vegetation index data on improving the forest cover classification accuracy using fine-resolution remote sensing data. This method firstly fused Landsat ETM+ NDVI and MODIS NDVI data to obtain time series fine-resolution NDVI data, and then the temporal features were extracted from the fused NDVI data. Finally, temporal features combined with Landsat ETM+ spectral data was used to improve forest cover classification accuracy using supervised classifier. The study in North China region confirmed that time series NDVI features had significant effects on improving forest cover classification accuracy of fine resolution remote sensing data. The NDVI features extracted from time series fused NDVI data could improve the overall classification accuracy approximately 5% from 88.99% to 93.88% compared to only using single Landsat ETM+ data.
机译:森林覆盖通过影响碳储量,水文循环和能量平衡,在气候变化中发挥关键作用。可以从诸如Landsat Enhanced Thematic Mapper Plus(ETM +)之类的高分辨率数据中确定森林覆盖率信息。但是,由于很难连续获取数据,因此使用高分辨率数据进行的森林覆盖分类通常仅使用一个时间数据。由于不同的植被类型在精细分辨率数据中可能具有相似的光谱特征,因此可能会在不涉及植被生长信息的情况下实现错误分类的结果。为了克服这些问题,提出了使用Landsat ETM +数据并附有时间序列中分辨率成像光谱仪(MODIS)归一化植被指数(NDVI)数据的森林覆盖分类方法。目的是研究从粗分辨率时间序列植被指数数据中提取的时间特征在使用细分辨率遥感数据提高森林覆盖分类准确度方面的潜力。该方法首先将Landsat ETM + NDVI和MODIS NDVI数据融合以获得时间序列的高分辨率NDVI数据,然后从融合的NDVI数据中提取时间特征。最后,将时间特征与Landsat ETM +光谱数据相结合,使用监督分类器来提高森林覆盖分类的准确性。在华北地区的研究证实,时间序列NDVI特征对于提高高分辨率遥感数据的森林覆盖分类准确度具有重要影响。与仅使用单个Landsat ETM +数据相比,从时间序列融合的NDVI数据中提取的NDVI特征可以将整体分类精度从88.99%提高到93.88%约5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号