首页> 外文期刊>International Journal for Numerical Methods in Engineering >Improving the quality of meshes for the simulation of semiconductor devices using Lepp-based algorithms
【24h】

Improving the quality of meshes for the simulation of semiconductor devices using Lepp-based algorithms

机译:使用基于Lepp的算法提高用于仿真半导体器件的网格的质量

获取原文
获取原文并翻译 | 示例
           

摘要

This paper discusses a new post-process algorithm for generating valid Delaunay meshes for the Box-method (finite-volume method) as required in semiconductor device simulation. In such an application, the following requirements must be considered: (i) in critical zones of the device, edges aligned with the flow of the current (anisotropic meshes) are needed; (ii) boundary and interface triangles with obtuse angles opposite to the boundary/interfaces are forbidden; (iii) large obtuse angles in the interior of the device must be destroyed and (iv) interior vertices with high vertex-edge connectivity should be avoided. By starting from a fine Delaunay mesh that satisfies condition (i), the algorithm produces a Delaunay mesh that fully satisfies condition (ii) and satisfies conditions (iii) and (iv) according to input tolerance parameters γ and c, where γ is a maximum angle tolerance value and c is a maximum vertex-edge connectivity tolerance value. Both to destroy any target interior obtuse triangle t and any target high vertex-edge connectivity, a Lepp-Delaunay algorithm is used. The elimination of obtuse angles opposite to the boundary and/or interfaces is done either by longest edge bisection or by the generation of isosceles triangles. The Lepp-Delaunay algorithm allows a natural improvement of the input mesh by inserting a few points in some existing edges of the current triangulation. Examples of the use of the algorithm over Delaunay constrained meshes generated by a normal offsetting approach will be shown. A comparison with an orthogonal refinement method followed by Voronoi point insertion is also included.
机译:本文讨论了一种新的后处理算法,该算法可为半导体器件仿真中所需的Box方法(有限体积方法)生成有效的Delaunay网格。在这样的应用中,必须考虑以下要求:(i)在设备的关键区域,需要与电流(各向异性网格)对齐的边缘; (ii)禁止以钝角与边界/界面相反的边界和界面三角形; (iii)必须破坏设备内部的大钝角,并且(iv)应当避免具有高顶点边缘连通性的内部顶点。通过从满足条件(i)的精细Delaunay网格开始,该算法生成完全满足条件(ii)并根据输入公差参数γ和c满足条件(iii)和(iv)的Delaunay网格,其中γ为最大角度公差值,c是最大顶点边连接公差值。为了破坏任何目标内部钝角三角形t和任何目标高顶点边缘连通性,都使用了Lepp-Delaunay算法。消除与边界和/或界面相反的钝角可以通过最长的边缘平分或通过生成等腰三角形来实现。 Lepp-Delaunay算法可以通过在当前三角剖分的某些现有边缘中插入一些点来自然改善输入网格。将显示在法线偏移方法生成的Delaunay约束网格上使用算法的示例。还包括与正交细化方法以及随后的Voronoi点插入的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号