首页> 外文期刊>Integral transforms and special functions >Exact and useful formulas of generalized gamma functions occurring in finite diffraction theory
【24h】

Exact and useful formulas of generalized gamma functions occurring in finite diffraction theory

机译:有限衍射理论中广义伽玛函数的精确和有用公式

获取原文
获取原文并翻译 | 示例

摘要

Exact formulas of generalized gamma functions, Gamma(m)(u, z), occurring in finite diffraction theory are derived in closed form for arbitrary m, u = n + 1/2 (m and n are non-negative integers), and for both real and complex arguments z. For m = 1 and real argument z, the formula consists of polynomials and the complementary error function. And, for m = 1 and purely imaginary argument z occurring in the Wiener-Hopf integral equation for a finite diffraction problem, the formula is expressed by polynomials and the Fresnel integral which is a well-known function in mathematical theory of diffraction. The formulas for an arbitrary positive integer m are also obtained simply by differentiating Gamma(m)(u, z) with respect to z. These exact formulas are graphically shown and compared with Kobayashi's asymptotic formulas for various m and n values.
机译:有限衍射理论中出现的广义伽玛函数的精确公式Gamma(m)(u,z)以任意m,u = n + 1/2(m和n为非负整数)的闭合形式导出。对于实数和复数参数z。对于m = 1且实数为z的公式,该公式由多项式和互补误差函数组成。而且,对于m = 1且纯粹的虚数自变量z出现在有限衍射问题的Wiener-Hopf积分方程中,该公式由多项式和菲涅耳积分表示,这是衍射数学理论中的一个众所周知的函数。任意正整数m的公式也可以简单地通过相对于z区分Gamma(m)(u,z)来获得。这些精确的公式以图形方式显示,并与Kobayashi的渐近公式比较了m和n的各种值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号