首页> 外文期刊>Biochimica et Biophysica Acta. Protein Structure and Molecular Enzymology >Homoserine dehydrogenase from Saccharomyces cerevisiae: kinetic mechanism and stereochemistry of hydride transfer
【24h】

Homoserine dehydrogenase from Saccharomyces cerevisiae: kinetic mechanism and stereochemistry of hydride transfer

机译:酿酒酵母中的高丝氨酸脱氢酶:氢化物转移的动力学机理和立体化学

获取原文
获取原文并翻译 | 示例
       

摘要

Homoserine dehydrogenase (HSD), which is required for the synthesis of threonine, isoleucine and methionine in fungi, is a potential target for novel antifungal drugs. In order to design effective inhibitors, the kinetic mechanism of Saccharomyces cerevisiae HSD and the stereochemistry of hydride transfer were examined. Product inhibition experiments revealed that yeast HSD follows an ordered Bi Bi kinetic mechanism, where NAD(P)H must bind the enzyme prior to asparate semialdehyde (ASA) and homoserine is released first followed by NAD(P)~+. H-(1,2,4-triazol-3-yl)-D,L-alanine was an uncompetitive inhibitor of HSD with respect to NADPH (K_(ii) = 3.04 ± 0.18 mM) and a noncompetitive inhibitor with respect to ASA (K_(is) = 1.64 ± 0.36 mM, K_ii) = 3.84 ± 0.46 mM), in agreement with the proposed substrate order. Both kinetic isotope and viscosity experiments provided evidence for a very rapid catalytic step and suggest nicotinamide release to be primarily rate limiting. Incubation of HSD with stereospecifically deuterated NADP[~2H] and subsaturating amounts of aspartate semialdehyde revealed that the pro-S NADPH hydride is transferred to the aldehyde. The pH dependence of steady state kinetic parameters indicate that ionizable groups with basic pKs may be involved in substrate binding, consistent with the observation of Lys223 at the enzyme active site in the recently determined 3D structure [B. DeLaBarre, P.R. Thompson, G.D. Wright, A.M. Berghuis, Nat. Struct. Biol. 7 (2000) 238-244]. These findings provide the requisite foundation for future exploitation of fungal HSD in inhibitor design.
机译:在真菌中合成苏氨酸,异亮氨酸和蛋氨酸所需的高丝氨酸脱氢酶(HSD)是新型抗真菌药物的潜在靶标。为了设计有效的抑制剂,研究了酿酒酵母HSD的动力学机理和氢化物转移的立体化学。产物抑制实验表明酵母HSD遵循有序的Bi Bi动力学机制,其中NAD(P)H必须在天冬氨酸半醛(ASA)之前结合酶,然后先释放高丝氨酸,然后释放NAD(P)+。 H-(1,2,4-三唑-3-基)-D,L-丙氨酸相对于NADPH是HSD的非竞争性抑制剂(K_(ii)= 3.04±0.18 mM),相对于ASA是非竞争性的抑制剂(K_(is)= 1.64±0.36 mM,K_ii)= 3.84±0.46 mM),与建议的基板顺序一致。动力学同位素和粘度实验均提供了非常快速的催化步骤的证据,并表明烟酰胺的释放主要是速率限制。用立体定向氘化的NADP [〜2H]和不饱和量的天冬氨酸半醛孵育HSD表明,pro-S NADPH氢化物转移至醛中。 pH对稳态动力学参数的依赖性表明,具有碱性pKs的可电离基团可能参与底物结合,这与最近确定的3D结构中酶活性位点Lys223的观察一致[B. DeLaBarre,P.R. Thompson,G.D. Wright,A.M. Nat.Berghuis结构。生物学7(2000)238-244]。这些发现为将来在抑制剂设计中利用真菌HSD提供了必要的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号