首页> 外文期刊>Applied Soft Computing >Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agriculture application
【24h】

Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agriculture application

机译:基于模糊认知图的棉花作物产量预测方法作为精准农业决策支持系统的基础

获取原文
获取原文并翻译 | 示例

摘要

This work investigates the process of yield prediction in cotton crop production using the soft computing technique of fuzzy cognitive maps. Fuzzy cognitive map (FCM) is a fusion of fuzzy logic and cognitive map theories, and is used for modeling and representing experts' knowledge. It is capable of dealing with situations including uncertain descriptions using similar procedure such as human reasoning does. It is a challenging approach for decision making especially in complex processing environments. The FCM approach presented here was chosen to be utilized in agriculture because of the nature of the application. The prediction of yield in cotton production is a complex process with sufficient interacting parameters and FCMs are suitable for this kind of problem. Throughout this proposed method, FCMs designed and developed to represent experts' knowledge for cotton (Gossypium hirsutum L.) yield prediction and crop management. The developed FCM model consists of nodes linked by directed edges, where the nodes represent the main factors affecting cotton crop production such as texture, organic matter, pH, K, P, Mg, N, Ca, Na and cotton yield, and the directed edges show the cause-effect (weighted) relationships between the soil properties and cotton yield. The investigated methodology was evaluated for 360 cases measured during the time of six subsequent years (2001-2006) in a 5 ha experimental cotton field, in predicting the yield class between two possible categories ("low" and "high"). The results obtained reveal its comparative advantage over the benchmarking machine learning algorithms tested for the same data set for the years mentioned by providing decisions that match better with the real measured ones. The main advantage of this approach is its simple structure and flexibility, representing knowledge visually and more descriptively. Hence, it might be a convenient tool in predicting cotton yield and improving crop management.
机译:这项工作调查了使用模糊认知图的软计算技术对棉花作物产量进行预测的过程。模糊认知图(FCM)是模糊逻辑和认知图理论的融合,用于建模和表示专家的知识。它能够使用诸如人类推理之类的类似程序处理包括不确定描述在内的情况。这是一种决策方面的挑战性方法,尤其是在复杂的处理环境中。由于应用的性质,此处介绍的FCM方法被选择用于农业。棉花生产中产量的预测是一个复杂的过程,具有足够的相互影响的参数,FCM适用于此类问题。在整个提议的方法中,FCM的设计和开发代表了专家对棉花(Gossypium hirsutum L.)产量预测和作物管理的知识。发达的FCM模型由有向边链接的节点组成,其中节点代表影响棉花作物生产的主要因素,例如质地,有机质,pH,K,P,Mg,N,Ca,Na和棉花产量,以及有向的边缘显示了土壤特性和棉花产量之间的因果关系(加权)关系。在接下来的6年(2001-2006年)的5公顷试验棉田中,对所调查的方法进行了360例评估,以预测两个可能类别(“低”和“高”)之间的产量类别。通过提供与实际测量数据更好匹配的决策,所获得的结果显示出与基准机器学习算法相比所具有的比较优势,该基准测试机器学习算法针对上述年份针对相同数据集进行了测试。这种方法的主要优点是其简单的结构和灵活性,可以在视觉上和描述性上代表知识。因此,它可能是预测棉花产量和改善作物管理的便捷工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号