首页> 外文期刊>Applied Microbiology and Biotechnology >Optimization of fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques
【24h】

Optimization of fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques

机译:使用基于人工智能的技术优化樟脑牛樟芝ATCC 200183生产三萜类物质的发酵培养基

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, alteration in morphology of submergedly cultured Antrodia camphorata ATCC 200183 including arthroconidia, mycelia, external and internal structures of pellets was investigated. Two optimization models namely response surface methodology (RSM) and artificial neural network (ANN) were built to optimize the inoculum size and medium components for intracellular triterpenoid production from A. camphorata. Root mean squares error, R2, and standard error of prediction given by ANN model were 0.31%, 0.99%, and 0.63%, respectively, while RSM model gave 1.02%, 0.98%, and 2.08%, which indicated that fitness and prediction accuracy of ANN model was higher when compared to RSM model. Furthermore, using genetic algorithm (GA), the input space of ANN model was optimized, and maximum triterpenoid production of 62.84 mg l-~1 was obtained at the GAoptimized concentrations of arthroconidia (1.78×10 ~5 ml-~1) and medium components (glucose, 25.25 gl- ~1; peptone, 4.48 gl-~1; and soybean flour, 2.74 gl- ~1). The triterpenoid production experimentally obtained using the ANN-GA designed medium was 64.79±2.32 mg l-~1 which was in agreement with the predicted value. The same optimization process may be used to optimize many environmental and genetic factors such as temperature and agitation that can also affect the triterpenoid production from A. camphorata and to improve the production of bioactive metabolites from potent medicinal fungi by changing the fermentation parameters.
机译:在这项研究中,调查了水下培养的樟芝牛樟芝ATCC 200183的形态变化,包括关节炎,菌丝体,颗粒的内部和内部结构。建立了两个优化模型,分别是响应面方法(RSM)和人工神经网络(ANN),以优化樟脑草细胞内三萜类化合物生产的接种量和培养基成分。 ANN模型给出的均方根误差,R2和预测标准误分别为0.31%,0.99%和0.63%,而RSM模型给出的均方根误差为1.02%,0.98%和2.08%,这表明适应度和预测准确性与RSM模型相比,ANN模型的系数更高。此外,使用遗传算法(GA)优化了ANN模型的输入空间,并且在GA优化浓度的节肢动物(1.78×10〜5 ml-〜1)和培养基中,最大三萜产量为62.84 mg l-〜1成分(葡萄糖25.25 gl-〜1;蛋白,4.48 gl-〜1;大豆粉2.74 gl-〜1)。使用ANN-GA设计的培养基实验获得的三萜类化合物产量为64.79±2.32 mg l-1〜-1,与预测值相符。可以使用相同的优化过程来优化许多环境和遗传因素,例如温度和搅动,这些因素也会影响樟脑曲霉的三萜类化合物的产生,并通过更改发酵参数来提高有效药用真菌的生物活性代谢物的产生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号