...
首页> 外文期刊>Acta Physiologiae Plantarum >Improved reactive aldehyde, salt and cadmium tolerance of transgenic barley due to the expression of aldo-keto reductase genes
【24h】

Improved reactive aldehyde, salt and cadmium tolerance of transgenic barley due to the expression of aldo-keto reductase genes

机译:由于醛糖酮还原酶基因的表达,提高了转基因大麦的活性醛,盐和镉耐受性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Under various stress conditions, plant cells are exposed to oxidative damage which triggers lipid peroxidation. Lipid peroxide breakdown products include protein crosslinking reactive aldehydes. These are highly damaging to living cells. Stress-protective aldo-keto reductase (AKR) enzymes are able to recognise and modify these molecules, reducing their toxicity. AKRs not only modify reactive aldehydes but may synthesize osmoprotective sugar alcohols as well. The role of these mixed function enzymes was investigated under direct reactive aldehyde, heavy metal and salt stress conditions. Transgenic barley (Hordeum vulgare L.) plants constitutively expressing AKR enzymes derived from either thale cress (Arabidopsis thaliana) (AKR4C9) or alfalfa (Medicago sativa) (MsALR) were studied. Not only AKR4C9 but MsALR expressing plants were also found to produce more sorbitol than the non-transgenic (WT) barley. Salinity tolerance of genetically modified (GM) plants improved, presumably as a consequence of the enhanced sorbitol content. The MsALR enzyme expressing line (called 51) exhibited almost no symptoms of salt stress. Furthermore, both transgenes were shown to increase reactive aldehyde (glutaraldehyde) tolerance. Transgenic plants also exhibited better cadmium tolerance compared to WT, which was considered to be an effect of the reduction of reactive aldehyde molecules. Transgenic barley expressing either thale cress or alfalfa derived enzyme showed improved heavy metal and salt tolerance. Both can be explained by higher detoxifying and sugar alcohol producing activity. Based on the presented data, we consider AKRs as very effective stress-protective enzymes and their genes provide promising tools in the improvement of crops through gene technology.
机译:在各种胁迫条件下,植物细胞会受到氧化损伤,从而触发脂质过氧化。脂质过氧化物分解产物包括蛋白质交联反应性醛。这些对活细胞具有高度破坏性。应激保护性醛酮还原酶(AKR)能够识别和修饰这些分子,从而降低其毒性。 AKR不仅可以修饰反应性醛,而且还可以合成渗透保护性糖醇。在直接反应性醛,重金属和盐胁迫条件下,研究了这些混合功能酶的作用。研究了组成性表达源自拟南芥(Arabidopsis thaliana)(AKR4C9)或苜蓿(Medicago sativa)(MsALR)的AKR酶的转基因大麦(Hordeum vulgare L.)植物。还发现不仅表达AKR4C9的植物,而且表达MsALR的植物都比非转基因(WT)大麦产生更多的山梨醇。转基因(GM)植物的耐盐性提高了,大概是由于山梨醇含量增加的结果。 MsALR酶表达线(称为51)几乎没有表现出盐胁迫的症状。此外,两种转基因均显示出增加了活性醛(戊二醛)的耐受性。与WT相比,转基因植物还表现出更好的镉耐受性,这被认为是减少了反应性醛分子的作用。表达拟南芥或苜蓿衍生酶的转基因大麦显示出改善的重金属和盐耐受性。两者都可以通过更高的排毒和糖醇生产活性来解释。根据提供的数据,我们认为AKRs是非常有效的逆境保护酶,其基因为通过基因技术改良作物提供了有前途的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号