首页> 外文期刊>ACS applied materials & interfaces >Pressure-Activated Thermal Transport via Oxide Shell Rupture in Liquid Metal Capsule Beds
【24h】

Pressure-Activated Thermal Transport via Oxide Shell Rupture in Liquid Metal Capsule Beds

机译:通过氧化物壳破裂在液态金属胶囊床中的压力激活热传输

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Liquid metal (LM)-based thermal interface materials (TIMs) have the potential to dissipate high heat loads in modern electronics and often consist of LM microcapsules embedded in a polymer matrix. The shells of these microcapsules consist of a thin LM oxide that forms spontaneously. Unfortunately, these oxide shells degrade heat transfer between LM capsules. Thus, rupturing these oxide shells to release their LM and effectively bridge the microcapsules is critical for achieving the full potential of LM-based TIMs. While this process has been studied from an electrical perspective, such results do not fully translate to thermal applications because electrical transport requires only a single percolation path. In this work, we introduce a novel method to study the rupture mechanics of beds composed solely of LM capsules. Specifically, by measuring the electrical and thermal resistances of capsule beds during compression, we can distinguish between the pressure at which capsule rupture initiates and the pressure at which widespread capsule rupture occurs. These pressures significantly differ, and we find that the pressure for widespread rupture corresponds to a peak in thermal conductivity during compression; hence, this pressure is more relevant to LM thermal applications. Next, we quantify the rupture pressure dependence on LM capsule age, size distribution, and oxide shell chemical treatment. Our results show that large freshly prepared capsules yield higher thermal conductivities and rupture more easily. We also show that chemically treating the oxide shell further facilitates rupture and increases thermal conductivity. We achieve a thermal conductivity of 16 W K-1 at a pressure below 0.2 MPa for capsules treated with dodecanethiol and hydrochloric acid. Importantly, this pressure is within the acceptable range for TIM applications.
机译:基于液体金属(LM)的热界面材料(TIMS)有可能在现代电子设备中消散高热量负荷,并且通常由嵌入聚合物基质中的LM微胶囊组成。这些微胶囊的壳由自发形成的薄LM氧化物组成。不幸的是,这些氧化物壳降低了LM胶囊之间的热传递。因此,破裂这些氧化物壳以释放它们的LM并有效地桥接微胶囊对于实现基于LM的TIM的全部潜力至关重要。虽然已经从电气角度研究了该过程,但是这种结果并不完全转化为热应用,因为电气传输只需要单个渗透路径。在这项工作中,我们介绍了一种新的方法来研究仅为LM胶囊组成的床破裂力学。具体地,通过在压缩期间测量胶囊床的电气和热阻,我们可以区分胶囊破裂引起的压力和发生普通胶囊破裂的压力。这些压力显着不同,我们发现广泛破裂的压力对应于压缩期间导热率的峰值;因此,该压力与LM热应用更相关。接下来,我们量化对LM胶囊年龄,尺寸分布和氧化物壳化学处理的破裂压力依赖性。我们的结果表明,大型新鲜制备的胶囊会产生更高的导热性,更容易破裂。我们还表明,化学处理氧化物壳进一步有助于破裂并提高导热率。在用十二烷硫醇和盐酸处理的胶囊,我们在低于0.2MPa的压力下实现16W K-1的导热率。重要的是,该压力在Tim应用程序的可接受范围内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号