...
首页> 外文期刊>ACS nano >Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS2 Transistors with Reduction of Metal-Induced Gap States
【24h】

Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS2 Transistors with Reduction of Metal-Induced Gap States

机译:多层MOS2晶体管电触点的肖特基势垒高度工程,减少金属诱导的间隙状态

获取原文
获取原文并翻译 | 示例
           

摘要

The difficulty in Schottky barrier height (SBH) control arising from Fermi-level pinning (FLP) at electrical contacts is a bottleneck in designing high-performance nanoscale electronics and optoelectronics based on molybdenum disulfide (MoS2). For electrical contacts of multilayered MoS2, the Fermi level on the metal side is strongly pinned near the conduction-band edge of MoS2, which makes most MoS2 channel field-effect transistors (MoS2 FETs) exhibit n-type transfer characteristics regardless of their source/drain (S/D) contact metals. In this work, SBH engineering is conducted to control the SBH of electrical top contacts of multilayered MoS2 by introducing a metal-interlayer-semiconductor (MIS) structure which induces the Fermi-level unpinning by a reduction of metal induced gap states (MIGS). An ultrathin titanium dioxide (TiO2) interlayer is inserted between the metal contact and the multilayered MoS2 to alleviate FLP and tune the SBH at the S/D contacts of multilayered MoS2 FETs. A significant alleviation of FLP is demonstrated as MIS structures with 1 nm thick TiO2 interlayers are introduced into the S/D contacts. Consequently, the pinning factor (S) increases from 0.02 for metal-semiconductor (MS) contacts to 0.24 for MIS contacts, and the controllable SBH range is widened from 37 meV (50-87 meV) to 344 meV (107-451 meV). Furthermore, the Fermi-level unpinning effect is reinforced as the interlayer becomes thicker. This work widens the scope for modifying electrical characteristics of contacts by providing a platform to control the SBH through a simple process as well as understanding of the FLP at the electrical top contacts of multilayered MoS2.
机译:在电触点处由FERMI级钉扎(FLP)引起的肖特基势垒高度(SBH)控制的难度是基于二硫化钼(MOS2)的高性能纳米电子和光电子设计的瓶颈。对于多层MOS2的电触点,金属侧上的费米水平在MOS2的导通带边缘附近牢固地固定,这使得大多数MOS2通道场效应晶体管(MOS2 FET)呈现n型传送特性,而不管其源/漏极(S / D)接触金属。在这项工作中,通过引入金属介质 - 半导体(MIS)结构来控制MOSED MOS2的电顶触点的SBH,通过减少金属诱导的间隙状态(MIGS)来控制多层半导体(MIS)结构。在金属触点和多层MOS2之间插入超二氧化钛(TiO2)中间层以缓解FLP并在多层MOS2 FET的S / D触点处调谐SBH。将FLP的显着减轻显着减轻作为MIS结构,其中1nm厚的TiO2中间层被引入S / D触点。因此,钉扎系数从金属半导体(MS)触点0.02增加到0.24的MIS接触,可控SBH范围从37 meV(50-87meV)加宽到344 meV(107-451 mev) 。此外,随着中间层变厚,加强了FERMI水平的未纯化效果。通过提供一个平台来通过简单的过程来控制SBH来改变接触的电气特性的范围以及在多层MOS2的电顶触点处的FLP的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号