首页> 外文期刊>Biochemistry >Conformational Dynamics, Intramolecular Domain Conformation Signaling, and Activation of Apo-FimD Revealed by Single-Molecule Fluorescence Resonance Energy Transfer Studies
【24h】

Conformational Dynamics, Intramolecular Domain Conformation Signaling, and Activation of Apo-FimD Revealed by Single-Molecule Fluorescence Resonance Energy Transfer Studies

机译:单分子荧光共振能量转移研究表明,单分子荧光共振能量转移研究揭示的构象动态,分子内域构象信号和APO-FIMD的激活

获取原文
获取原文并翻译 | 示例
           

摘要

The chaperone-usher secretion pathway is a conserved bacterial protein secretion system dedicated to the biogenesis of adhesive fibers. Usher, a multidomain-containing outer membrane protein, plays a central role in this process by acting as a molecular machine that recruits different chaperone- subunit complexes, catalyzes subunit polymerization, and forms a channel for secretion of the assembled subunits. While recent crystal structural studies have greatly advanced our understanding of the structure and function of ushers, the overall architecture of the full-length apo-usher, the molecular events that dictate conformational changes in usher during pilus biogenesis, and its activation by the specific chaperone-adhesin complex remain largely elusive. Using single-molecule fluorescence resonance energy transfer studies, we found that the substrate-free usher FimD (apo-FimD) adopts a contracted conformation that is distinct from its substrate-bound states; both the N-terminal domain (NTD) and the C-terminal domain (CTD) of apo-FimD are highly dynamic, and FimD coordinates its domain conformational changes via intramolecular domain conformation signaling. By combining these studies with in vitro photo-cross-linking studies, we further show that only the chaperone-bound adhesin (FimC:FimH) can be transferred to the CTD, dislocates the plug domain, and triggers conformational changes in the remaining FimD domains. Taken together, these studies delineate an overall architecture of the full-length apo-FimD, provide detailed mechanic insight into the activation of apo-FimD, and explain why FimD could adjust its conformational states to perform multiple functions in each cycle of pilus subunit addition and ensure that pilus assembly proceeds progressively in a cellular energy-free environment.
机译:伴侣源性分泌途径是一种专用于粘合纤维生物发生的保守细菌蛋白质分泌系统。迎来含有多麦粉的外膜蛋白,通过作为募集不同伴侣亚基复合物的分子机,催化亚基聚合,并形成用于分泌组装亚基的通道的分子机来发挥核心作用。虽然最近的晶体结构研究大大提升了我们对欧海队的结构和功能的了解,但全长Apo-Usher的整体架构,植物生物发生期间决定了迎来了一致性变化的分子事件,以及其特定伴侣的激活 - adhesin综合体仍然难以捉摸。使用单分子荧光共振能量转移研究,我们发现无基质的迎宾FIMD(APO-FIMD)采用与其基材结合状态不同的粘合构象; APO-FIMD的N末端域(NTD)和C末端域(CTD)都是高度动态的,并且FIMD通过分子区构象信号传导坐标其结构域构象变化。通过将这些研究与体外的光交联研究相结合,我们进一步表明,只有伴侣粘附的粘附粘蛋白(FIMC:FIMH)可以转移到CTD,脱位插头域,并触发剩余的FIMD结构域中的构象变化。这些研究叠加,描绘了全长apo-fimd的整体架构,提供了详细的机械洞察APO-FIMD的激活,并解释了为什么FIMD可以调整其构象状态,以在Pilus亚基的每个循环中执行多种功能并确保Pilus组装在无细胞的无能环境中逐步进行。

著录项

  • 来源
    《Biochemistry》 |2019年第14期|共11页
  • 作者单位

    Chinese Acad Sci Inst Biophys CAS Ctr Excellence Biomacromol Natl Lab Biomacromol 15 Datun Rd Beijing 100101 Peoples R China;

    Chinese Acad Sci Inst Biophys CAS Ctr Excellence Biomacromol Natl Lab Biomacromol 15 Datun Rd Beijing 100101 Peoples R China;

    Chinese Acad Sci Inst Biophys CAS Ctr Excellence Biomacromol Natl Lab Biomacromol 15 Datun Rd Beijing 100101 Peoples R China;

    Chinese Acad Sci Shanghai Inst Mat Med CAS Key Lab Receptor Res Drug Discovery &

    Design Ctr 555 Zuchongzhi Rd Shanghai 201203 Peoples R China;

    Chinese Acad Sci Inst Biophys CAS Ctr Excellence Biomacromol Natl Lab Biomacromol 15 Datun Rd Beijing 100101 Peoples R China;

    Chinese Acad Sci Shanghai Inst Mat Med CAS Key Lab Receptor Res Drug Discovery &

    Design Ctr 555 Zuchongzhi Rd Shanghai 201203 Peoples R China;

    Univ Chinese Acad Sci Beijing 100101 Peoples R China;

    Chinese Acad Sci Inst Biophys CAS Ctr Excellence Biomacromol Natl Lab Biomacromol 15 Datun Rd Beijing 100101 Peoples R China;

    Chinese Acad Sci Inst Biophys CAS Ctr Excellence Biomacromol Natl Lab Biomacromol 15 Datun Rd Beijing 100101 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号