首页> 外文学位 >A computational study of the conformational structure and dynamics of biopolymers in relation to single molecule fluorescence resonance energy transfer measurements.
【24h】

A computational study of the conformational structure and dynamics of biopolymers in relation to single molecule fluorescence resonance energy transfer measurements.

机译:与单分子荧光共振能量转移测量有关的生物聚合物的构象结构和动力学的计算研究。

获取原文
获取原文并翻译 | 示例

摘要

The development of single molecule spectroscopy over the last two decades has made it possible to probe the conformational structure and dynamics of biomolecules with an unprecedented level of detail. Room-temperature Single-Molecule Fluorescence Resonance Energy Transfer (SM-FRET), in particular, provides the ability to probe intra- and inter-molecular distances as a function of time in a direct manner. These experiments also give rise to many new theoretical questions regarding the behavior of single molecules as apposed to averages over large ensembles.; Previous theoretical work on SM-FRET has been based on relatively simple phenomenological stochastic models. In this thesis, we take the next step by attempting to provide a more molecular view of the conformational structure and dynamics underlying SM-FRET experiments. To this end, we use combination of Langevin Dynamics simulations of the biopolymer together with kinetic Monte Carlo simulations of the photon statistics. The analysis focuses on quantities which are particularly relevant to SM-FRET experiments, such as the distribution of donor-acceptor distance and its displacement. Emphasis is put on the unique ability of those experiments to provide information on the correlations between conformational structure and dynamics. We also explore the effect of immobilizing the biopolyiner on surface or trapping it in a pore.; Our investigation focuses on two off-lattice models, one of a freely-joined homopolymer and another of a polyypeptide. In the homopolymer case, we consider the conformational structure and dynamics in good and poor solvents, as well as the effect of immobilization on attractive or repulsive surfaces. The polypeptide model is designed to mimic the two-stranded coiled-coil from the yeast transcription factor GCN4 that was studied in the pioneering SM-FILET experiment by Hochstrasser and co-workers[46, 47]. In this case, we consider itninobilizations on repulsive and attractive surfaces as well as encapsulation inside of a pore with varying sizes and shapes. We also consider two types of denaturated states that differ with respect to the amount of residual secondary structure.; Finally, we propose a new way for extracting the dine scales of conformational dynamics from single-molecule single-photon fluorescence statistics. To this end, we derive a general relation between the autocorrelation function of the time-delay, between excitation and single photon emission and the autocorrelation function of the fluorescence life-time. We also examine the conditions under which there is a direct relation between the decay of the delay-time autocorrelation function and the time scale of conformational dynamics. We demonstrate how the time scales of conformational dynamics can be extracted from the time-delay autocorrelation function via applications to the above-mentioned homopolyner and polypeptide models.
机译:在过去的二十年中,单分子光谱学的发展使人们有可能以前所未有的详细程度探究生物分子的构象结构和动力学。尤其是室温单分子荧光共振能量转移(SM-FRET),可以直接探测随时间变化的分子内和分子间距离。这些实验也引起了许多新的理论问题,这些问题涉及单个分子的行为,该行为与大型集合体的平均值相关。以前有关SM-FRET的理论工作是基于相对简单的现象学随机模型。在本文中,我们通过尝试提供更多分子构象和SM-FRET实验基础的动力学观点来进行下一步。为此,我们结合了生物聚合物的Langevin动力学模拟和光子统计的动力学Monte Carlo模拟。分析着重于与SM-FRET实验特别相关的量,例如供体-受体距离的分布及其位移。重点放在这些实验的独特能力上,以提供有关构象结构与动力学之间相关性的信息。我们还探讨了将生物多聚化剂固定在表面或将其捕获在孔中的效果。我们的研究集中在两种非晶格模型上,一种是自由连接的均聚物,另一种是多肽。在均聚物的情况下,我们考虑良好和不良溶剂中的构象结构和动力学,以及固定在吸引或排斥表面上的效果。多肽模型被设计为模仿酵母转录因子GCN4的双链卷曲螺旋,Hochstrasser及其同事在开创性的SM-FILET实验中研究了该模型[46,47]。在这种情况下,我们考虑了在排斥和吸引表面上的去硅藻土化作用以及封装在具有不同大小和形状的孔中。我们还考虑了两种类型的变性态,它们的残留二级结构量不同。最后,我们提出了一种从单分子单光子荧光统计数据中提取构象动力学的进阶尺度的新方法。为此,我们推导了时间延迟的自相关函数,激发和单光子发射之间的一般关系与荧光寿命的自相关函数之间的一般关系。我们还研究了在条件下,延迟时间自相关函数的衰减与构象动力学的时间尺度之间存在直接关系。我们演示了如何通过应用到上述同聚体和多肽模型从时延自相关函数中提取构象动力学的时间尺度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号