首页> 外文期刊>Biotechnology and Bioengineering >Inverse metabolic engineering to improve Escherichia coli as an N-glycosylation host
【24h】

Inverse metabolic engineering to improve Escherichia coli as an N-glycosylation host

机译:逆向代谢工程可改善大肠杆菌作为N-糖基化宿主的能力

获取原文
获取原文并翻译 | 示例
           

摘要

An inverse metabolic engineering strategy was used to select for Escherichia coli cells with an increased capability to N-glycosylate a specific target protein. We developed a screen for E. coli cells containing extra-chromosomal DNA fragments for improved ability to add precise sugar groups onto the AcrA protein using the glycosylation system from Campylobacter jejuni. Four different sized (1, 2, 4, and 8kb) genomic DNA libraries were screened, and the sequences that conferred a yield advantage were determined. These advantageous genomic fragments were mapped onto the E. coli W3110 chromosome. Five candidate genes (identified across two or more libraries) were subsequently selected for forward engineering verification in E. coli CLM24 cells, utilizing a combination of internal standards for absolute quantitation and pseudo-selective reaction monitoring (pSRM) and Western blotting validation. An increase in glycosylated protein was quantified in cells overexpressing 4-α-glucantransferase and a phosphoenolpyruvate-dependent sugar phosphotransferase system, amounting to a 3.8-fold (engineered cells total=5.3mgL~(-1)) and 6.7-fold (engineered cells total=9.4mgL~(-1)) improvement compared to control cells, respectively. Furthermore, increased glycosylation efficiency was observed in cells overexpressing enzymes involved with glycosylation precursor synthesis, enzymes 1-deoxyxylulose-5-phosphate synthase (1.3-fold) and UDP-N-acetylglucosamine pyrophosphorylase (1.6-fold). To evaluate the wider implications of the engineering, we tested a modified Fc fragment of an IgG antibody as the target glycoprotein with two of our engineered cells, and achieved a ca. 75% improved glycosylation efficiency. Biotechnol. Bioeng. 2013; 110:2482-2493.
机译:使用逆代谢工程策略来选择具有增加的N-糖基化特定靶蛋白能力的大肠杆菌细胞。我们使用空肠弯曲杆菌的糖基化系统,开发了一种针对包含染色体外DNA片段的大肠杆菌细胞的筛选方法,以提高将精确糖基添加到AcrA蛋白上的能力。筛选了四个不同大小(1、2、4和8kb)的基因组DNA文库,并确定了赋予产量优势的序列。这些有利的基因组片段被定位到大肠杆菌W3110染色体上。随后选择五个候选基因(在两个或多个文库中鉴定)用于大肠杆菌CLM24细胞中的正向工程验证,利用内部标准品的组合进行绝对定量和伪选择性反应监测(pSRM)和Western印迹验证。在过表达4-α-葡聚糖转移酶和磷酸烯醇丙酮酸依赖性糖磷酸转移酶系统的细胞中定量了糖基化蛋白的增加,分别为3.8倍(工程细胞总数= 5.3mgL〜(-1))和6.7倍(工程细胞)与对照细胞相比,总改善分别为9.4mgL〜(-1))。此外,在与糖基化前体合成有关的过表达酶,1-脱氧木酮糖-5-磷酸合酶(1.3倍)和UDP-N-乙酰氨基葡糖焦磷酸化酶(1.6倍)中观察到细胞中糖基化效率提高。为了评估该工程设计的广泛意义,我们使用了两个工程改造的细胞测试了IgG抗体的Fc片段修饰为目标糖蛋白,并获得了约糖基化效率提高了75%。生物技术。生恩2013; 110:2482-2493。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号