...
首页> 外文期刊>Journal of Thermal Spray Technology >Feasibility Study of an Adaptive-Pressure Plasma Coating Process-Part 1: Model Description
【24h】

Feasibility Study of an Adaptive-Pressure Plasma Coating Process-Part 1: Model Description

机译:自适应压力等离子体涂层过程的可行性研究 - 第1部分:模型描述

获取原文
获取原文并翻译 | 示例
           

摘要

Thermal barrier coatings for gas turbine engines are mainly produced by electron beam physical vapor deposition or atmospheric plasma spray depending on the thermomechanical loading of engine components. This study deals with the numerical design of a two-step thermal plasma-aided physical vapor deposition process capable of efficiently evaporating the coating material processed in the plasma jet and of producing a strain-tolerant coating microstructure from vapor phase condensation. The system involved a high-pressure chamber and a low-pressure chamber connected by an expansion nozzle. The objective was to achieve the highest deposition efficiency for a given plasma specific enthalpy. The numerical simulations based on computational fluid dynamics and direct simulation Monte Carlo models projected the effect of the process geometry and operating conditions on the gas flow fields, powder vaporization efficiency and nucleation/growth phenomena in the gas phase. For a targeted powder feed rate, they allowed to determine the length of the high-pressure chamber, the diameter of the expansion nozzle and other dimensions of the deposition system. The expansion nozzle that linked the two chambers was the crucial component of the process, and the predictions made it possible to select the geometry and process operating parameters that avoided its clogging and/or melting.
机译:用于燃气轮机发动机的热阻挡涂层主要由电子束物理气相沉积或大气等离子体喷雾产生,这取决于发动机部件的热机械负载。该研究涉及一种两步热等离子体辅助物理气相沉积工艺的数值设计,能够有效地蒸发在等离子体射流中加工的涂层材料,并从气相缩合产生应变耐受涂覆微观结构。该系统涉及高压室和由膨胀喷嘴连接的低压室。目的是达到给定的等离子体特异性焓的最高沉积效率。基于计算流体动力学和直接仿真蒙特卡罗模型的数值模拟投影了过程几何和操作条件对气相中的气相,粉末汽化效率和成核/生长现象的影响。对于靶向粉末进料速率,它们可以确定高压室的长度,膨胀喷嘴的直径和沉积系统的其他尺寸。连接两个腔室的膨胀喷嘴是该过程的重要组成部分,并且预测使得可以选择避免其堵塞和/或熔化的几何形状和工艺操作参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号