首页> 外文期刊>Journal of Process Control >Mutual information-based sparse multiblock dissimilarity method for incipient fault detection and diagnosis in plant-wide process
【24h】

Mutual information-based sparse multiblock dissimilarity method for incipient fault detection and diagnosis in plant-wide process

机译:基于跨越的基于信息的稀疏多漏多相与性化型故障检测和诊断植物范围过程中的诊断

获取原文
获取原文并翻译 | 示例

摘要

Multiblock methods have attracted much attention in monitoring of plant-wide processes. However, most recent works only provide rough division results and do not take the data distribution changes among the process into consideration. To solve these defects, a new multiblock monitoring scheme that integrates a mutual information (MI)-based sparsification method, dissimilarity analysis (DISSIM) method and support vector data description (SVDD) is proposed in this paper. This method makes use of the complex relations between variables and the connections between sub-blocks in process decomposition to produce easy-to-interpret sub-blocks related to the process mechanism. Then DISSIM method is applied in each sub-block for distribution monitoring. The multiblock DISSIM strategy can deal with the local behaviors and distribution changes, improving its sensitivity to incipient changes in plant-wide process. Finally, results in all blocks are combined with SVDD to provide a final decision, and a diagnosis method is proposed for fault diagnosis. Case studies upon a numerical case and Tennessee Eastman (TE) benchmark process demonstrate the effectiveness of our method. (C) 2019 Elsevier Ltd. All rights reserved.
机译:多块方法引起了监测植物范围的过程的许多关注。但是,最近的作品仅提供粗略的划分结果,并不考虑过程之间的数据分布变化。为了解决这些缺陷,本文提出了一种新的多块监视方案,其集成了相互信息(MI)的稀疏方法,异化分析(溶解)方法和支持向量数据描述(SVDD)。该方法利用变量之间的复杂关系和过程分解中子块之间的连接,以产生与过程机制相关的易于解释的子块。然后在每个子块中应用溶解方法进行分配监测。多嵌段灾难策略可以处理当地行为和分布变化,提高其对省级过程中初期变化的敏感性。最后,所有块的结果与SVDD相结合以提供最终决定,并提出了诊断方法进行故障诊断。案例研究对数值案例和田纳西州伊斯坦德(TE)基准过程证明了我们方法的有效性。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号