首页> 外文期刊>Journal of natural gas science and engineering >Error behavior modeling in Capacitance-Resistance Model: A promotion to fast, reliable proxy for reservoir performance prediction
【24h】

Error behavior modeling in Capacitance-Resistance Model: A promotion to fast, reliable proxy for reservoir performance prediction

机译:电容电阻模型中的误差行为模型:促进到储层性能预测的快速,可靠性代理

获取原文
获取原文并翻译 | 示例

摘要

Using the original form of Capacitance-Resistance Model (CRM), as a waterflooding performance prediction tool, for modeling real reservoirs makes some unavoidable errors. Combination of this model with available data assimilation methods yields more powerful simulation tool with updating parameters over time. However, the inherent uncertainty arisen by modeling complex reservoirs with only a limited number of CRM parameters is not addressed yet. In this study, the model error behavior has been simulated through a physically-based dynamical system in which it has been correlated with the original model parameters. The ensemble-based Kalman filter (EnKF) data assimilation method has been employed to practice observation data. To show the validity of the developed CRM-Error system, we have employed it to replicate the data obtained from a synthetic model of an Iranian reservoir. Results show that acceptable ranges for the production rates have been achieved via this model in comparison with observed data.
机译:使用原始形式的电容电阻模型(CRM),作为水性性能预测工具,用于建模真正的水库产生一些不可避免的错误。具有可用数据同化方法的本模型的组合产生了更强大的仿真工具,随着时间的推移更新参数。然而,通过建模复杂储存器具有仅限数量的CRM参数来解决所固有的不确定性。在本研究中,通过基于物理的动态系统模拟模型错误行为,其中它与原始模型参数相关联。基于合奏的卡尔曼滤波器(ENKF)数据同化方法已经采用了实践观察数据。为了显示发达的CRM错误系统的有效性,我们使用它来复制从伊朗水库的合成模型获得的数据。结果表明,与观察到的数据相比,通过该模型实现了生产率的可接受范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号