首页> 外文OA文献 >Artificial Neural Network- (ANN-) Based Proxy Model for Fast Performances’ Forecast and Inverse Schedule Design of Steam-Flooding Reservoirs
【2h】

Artificial Neural Network- (ANN-) Based Proxy Model for Fast Performances’ Forecast and Inverse Schedule Design of Steam-Flooding Reservoirs

机译:基于人工神经网络 - 基于Anceply Propertand储层的快速表演预测和逆日程设计的人工神经网络(Ann-)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Steam flooding is one of the most effective and mature technology in heavy oil development. In this paper, a numerical simulation technology of steam flooding reservoir based on the finite volume method is firstly established. Combined with the phase change of steam phase, the fully implicit solution for steam flooding is carried out by using adaptive-time-step Newton iteration method. The Kriging method is used for stochastically to generate 4250 geological model samples by considering reservoir heterogeneity, and corresponding production schedule parameters are randomly given; then, these reservoir model samples are handled by the numerical simulation technology to obtain corresponding dynamic production data, which constitute the data for artificial neural network (ANN) training. By using the highly nonlinear global effect of artificial neural network and its powerful self-adaptive and self-learning functions, the forward-looking and inverse design ANN models of steam-flooding reservoirs are established, which provides a new method for rapid prediction of steam-flooding production performance and production schedule parameter design. In 4250 samples, the error of the forward-looking model is basically less than 0.1%, and the error of the inverse design model is generally less than 15%. It fully shows that the ANN models developed in this paper can quickly and effectively predict oil production and design production parameters and have an important guiding role in the implementation of the steam flooding technology. Finally, the forward-looking ANN model is applied to efficiently analyze the influencing factors of steam flooding process, and uncertainty analysis of the inverse design ANN model is conducted by Monte Carlo Simulation to illustrate its robustness. Besides, this paper may provide a reference for the application of neural network models to underground oil and gas reservoir, which is a typical invisible black box.
机译:蒸汽洪水是大油开发中最有效和成熟的技术之一。本文首先建立了基于有限体积法的蒸汽泛液储层数值模拟技术。结合蒸汽阶段的相变,通过使用自适应 - 时间步骤牛顿迭代方法进行完全隐含的蒸汽泛液解决方案。 Kriging方法通过考虑储层异质性而随机地用于产生4250个地质模型样本,并且对应的生产调度参数是随机给出的;然后,这些储层模型样本由数值模拟技术处理,以获得相应的动态生产数据,这构成了人工神经网络(ANN)培训的数据。通过使用人工神经网络的高度非线性全球效果及其强大的自适应和自适应和自动学习功能,建立了蒸汽淹水储层的前瞻性和逆设计ANN模型,为快速预测蒸汽提供了一种新方法 - 塑造生产性能和生产计划参数设计。在4250个样本中,前瞻性模型的误差基本上小于0.1%,并且逆设计模型的误差通常小于15%。它充分规定,本文开发的ANN模型可以快速有效地预测石油生产和设计生产参数,并在实施蒸汽洪水技术方面具有重要的指导作用。最后,应用前瞻性的ANN模型用于有效地分析蒸汽洪水过程的影响因素,并通过蒙特卡罗模拟进行逆设计ANN模型的不确定性分析,以说明其鲁棒性。此外,本文可以为神经网络模型应用于地下石油和气体储层的参考,这是一个典型的隐形黑匣子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号