首页> 外文期刊>Journal of Computational Physics >Generalized Scharfetter-Gummel schemes for electro-thermal transport in degenerate semiconductors using the Kelvin formula for the Seebeck coefficient
【24h】

Generalized Scharfetter-Gummel schemes for electro-thermal transport in degenerate semiconductors using the Kelvin formula for the Seebeck coefficient

机译:使用Kelvin公式以塞贝克系数的脱素公式的脱恒半导体中的电热传输的通用Scharfetter-Gummel方案

获取原文
获取原文并翻译 | 示例
           

摘要

Many challenges faced in today's semiconductor devices are related to self-heating phenomena. The optimization of device designs can be assisted by numerical simulations using the non-isothermal drift-diffusion system, where the magnitude of the thermoelectric cross effects is controlled by the Seebeck coefficient. We show that the model equations take a remarkably simple form when assuming the so-called Kelvin formula for the Seebeck coefficient. The corresponding heat generation rate involves exactly the three classically known self-heating effects, namely Joule, recombination and Thomson-Peltier heating, without any further (transient) contributions. Moreover, the thermal driving force in the electrical current density expressions can be entirely absorbed in the diffusion coefficient via a generalized Einstein relation. The efficient numerical simulation relies on an accurate and robust discretization technique for the fluxes (finite volume Scharfetter-Gummel method), which allows to cope with the typically stiff solutions of the semiconductor device equations. We derive two non-isothermal generalizations of the Scharfetter-Gummel scheme for degenerate semiconductors (Fermi-Dirac statistics) obeying the Kelvin formula. The approaches differ in the treatment of degeneration effects: The first is based on an approximation of the discrete generalized Einstein relation implying a specifically modified thermal voltage, whereas the second scheme follows the conventionally used approach employing a modified electric field. We present a detailed analysis and comparison of both schemes, indicating a superior performance of the modified thermal voltage scheme. (C) 2019 Elsevier Inc. All rights reserved.
机译:今天的半导体器件面临的许多挑战与自我加热现象有关。通过使用非等温漂移扩散系统的数值模拟可以通过数值模拟来辅助设备设计的优化,其中热电横效的大小由塞贝克系数控制。我们表明模型方程在假设Seebeck系数的所谓的kelvin公式时采用显着简单的形式。相应的发热速率涉及三种经典已知的自我加热效果,即焦耳,重组和汤姆森-Peltier加热,而没有任何进一步的(瞬态)贡献。此外,电流密度表达中的热驱动力可以通过广义的爱因斯坦关系在扩散系数中完全被膨小系数吸收。有效的数值模拟依赖于用于助焊剂的精确和稳健的离散化技术(有限音量Scharfetter-Gummel-Gummel方法),其允许应对半导体器件方程的典型稳定解。我们推出了两个非等温概括的Scharfetter-Gummel计划,用于脱蛋白配方的脱果半导体(FERMI-DIRAC统计)。这种方法在变性效应的治疗方面不同:首先是基于暗示特定改进的热电压的离散广义爱因斯坦关系的近似,而第二方案遵循采用改进的电场的常规使用方法。我们介绍了两种方案的详细分析和比较,表明改进的热电压方案的卓越性能。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号