首页> 外文学位 >Effect of phonon transport on the Seebeck coefficient and thermal conductivity of silicon nanowire arrays.
【24h】

Effect of phonon transport on the Seebeck coefficient and thermal conductivity of silicon nanowire arrays.

机译:声子传输对硅纳米线阵列的塞贝克系数和热导率的影响。

获取原文
获取原文并翻译 | 示例

摘要

Thermoelectrics enable solid-state conversion of heat to electricity by the Seebeck effect, but must provide scalable and cost-effective technology for practical waste heat harvesting. This dissertation explores the thermoelectric properties of electrochemically etched silicon nanowires through experiments, complemented by charge and thermal transport theories. Electrolessly etched silicon nanowires show anomalously low thermal conductivity that has been attributed to the increased scattering of heat conducting phonons from the surface disorder introduced by etching. The reduction is below the incoherent limit for phonon scattering at the boundary, the so-called Casimir limit. A new model of partially coherent phonon transport shows that correlated multiple scattering of phonons off resonantly matched rough surfaces can indeed lead to thermal conductivity below the Casimir limit. Using design guidelines from the theory, silicon nanowires of controllable surface roughness are fabricated using metal-assisted chemical etching. Extensive characterization of the nanowire surfaces using transmission electron microscopy provides surface roughness parameters that are important in testing transport theories. The second part of the dissertation focuses on the implications of increased phonon scattering on the Seebeck coefficient, which is a cumulative effect of non-equilibrium amongst charge carriers and phonons. A novel frequency-domain technique enables simultaneous measurements of the Seebeck coefficient and the thermal conductivity of nanowire arrays. The frequency response measurements isolate the parasitic contributions thus improving upon existing techniques for cross-plane thermoelectric measurements. While the thermal conductivity of nanowires reduces significantly with increased roughness, there is also a significant reduction in the Seebeck coefficient over a wide range of doping. Theoretical fitting of the data reveals that such reduction results from the annihilation of phonon drag in nanowires due to phonon boundary scattering. By exploring the effect of surface roughness and employing lattice non-equilibrium theories, the measurements are able to distinguish between long wavelength phonons that contribute to phonon drag and shorter wavelengths that contribute to heat conduction near room temperature. Phonon drag quenching in nanostructures has implications beyond silicon and this thesis paves the way toward spectrally selective phonon scattering for improving nanoscale thermoelectrics.
机译:热电器件可以通过塞贝克效应将热量从固态转化为电能,但是必须为实际的废热收集提供可扩展且具有成本效益的技术。本文通过实验探索了电化学刻蚀的硅纳米线的热电性能,并辅以电荷和热输运理论。化学蚀刻的硅纳米线显示出​​异常低的热导率,这归因于由蚀刻引入的表面无序导致的导热声子的散射增加。减少量低于边界处声子散射的非相干极限,即所谓的卡西米尔极限。一种新的部分相干声子传输模型表明,声子在共振匹配的粗糙表面上的多重散射确实可以导致导热率低于卡西米尔极限。根据该理论的设计指南,可利用金属辅助化学蚀刻来制造可控制表面粗糙度的硅纳米线。使用透射电子显微镜对纳米线表面的广泛表征提供了表面粗糙度参数,这些参数在测试传输理论中很重要。论文的第二部分着眼于声子散射的增加对塞贝克系数的影响,塞贝克系数是电荷载子和声子之间不平衡的累积效应。一种新颖的频域技术可以同时测量塞贝克系数和纳米线阵列的热导率。频率响应测量隔离了寄生影响,从而改善了现有的跨平面热电测量技术。尽管纳米线的热导率随粗糙度的增加而显着降低,但在宽范围的掺杂范围内,塞贝克系数也显着降低。数据的理论拟合表明,这种减少是由于声子边界散射导致纳米线中声子阻力的an灭所致。通过探索表面粗糙度的影响并采用晶格非平衡理论,这些测量结果能够区分导致声子拖曳的长波长声子和导致室温附近热传导的较短波长。纳米结构中的声子阻力猝灭具有超越硅的意义,因此,本文为光谱选择性声子散射铺平了道路,以改善纳米级热电学。

著录项

  • 作者

    Sadhu, Jyothi Swaroop.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Mechanical engineering.;Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号