...
首页> 外文期刊>Journal of Computational Physics >Communication-aware adaptive Parareal with application to a nonlinear hyperbolic system of partial differential equations
【24h】

Communication-aware adaptive Parareal with application to a nonlinear hyperbolic system of partial differential equations

机译:具有应用于部分微分方程的非线性双曲线系统的通信感知自适应子序列

获取原文
获取原文并翻译 | 示例

摘要

In the strong scaling limit, the performance of conventional spatial domain decomposition techniques for the parallel solution of PDEs saturates. When sub-domains become small, halo-communication and other overhead come to dominate. A potential path beyond this scaling limit is to introduce domain-decomposition in time, with one such popular approach being the Parareal algorithm which has received a lot of attention due to its generality and potential scalability. Low efficiency, particularly on convection dominated problems, has however limited the adoption of the method. In this paper we demonstrate trough large-scale numerical experiments that it is possible not only to obtain time-parallel speedup on the non-linear shallow water wave equation, but also that we may obtain parallel acceleration beyond what is possible using conventional spatial domain decomposition techniques alone. Two factors were essential in achieving this. First, for Parareal to converge on the hyperbolic problem we used an approximate Riemann solver as the preconditioner. This preconditioner introduces only dissipative errors with respect to the 3rd order accurate WENO-RK discretization used to solve the PDE system. The preconditoner is comparatively expensive and convergence is slow unless time-subdomains are short. We therefore introduce a new scheduler that we denote Communication Aware Adaptive Parareal (CAAP). CAAP increases obtainable speed-up by minimizing the time-subdomain length without making communication of time-subdomains too costly whilst also adaptively overlapping consecutive cycles of Parareal so to mitigate the impact of a relatively expensive coarse operator. (C) 2018 Elsevier Inc. All rights reserved.
机译:在强大的缩放限制中,常规空间域分解技术对PDE的并联溶液的性能饱和。当子域变小时,光环通信和其他开销来占据主导地位。超出该缩放限制的潜在路径是在时间上引入域分解,其中一种受欢迎的方法是由于其一般性和潜在的可扩展性而接受了很多关注的宫算法。然而,低效率,特别是对对流主导的问题,但是限制了采用该方法。在本文中,我们演示了大规模的数值实验,即不仅可以获得非线性浅水波方程上的时间并行加速,而且还可以获得超出使用传统空间域分解之外的平行加速度。单独的技巧。两个因素在实现这方面是必不可少的。首先,对于宫序来汇聚在双曲线问题上,我们使用了一个近似的riemann求解器作为预处理器。该预处理器仅介绍了用于第三顺序准确的Weno-RK离散化的耗散误差,用于解决PDE系统。除非时间子域短,除非时间子域,除非时间子域外,除非是短暂的,否则昂贵的昂贵且收敛性很慢。因此,我们介绍了一种新的调度程序,我们表示通信感知自适应窥视术(CAAP)。 CAAP通过最小化时间子域长度来增加可获得的速度,而不使时间子域的通信过于昂贵,同时还自适应地重叠连续的窥柱循环,以减轻相对昂贵的粗算子的影响。 (c)2018年Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号