...
首页> 外文期刊>Biotechnology Progress >Design of Metabolic Engineering Strategies for Maximizing L-(-)-Carnitine Production by Escherichia coli.Integration of the Metabolic and Bioreactor Levels
【24h】

Design of Metabolic Engineering Strategies for Maximizing L-(-)-Carnitine Production by Escherichia coli.Integration of the Metabolic and Bioreactor Levels

机译:最大限度地提高大肠杆菌生产L-(-)-肉碱的代谢工程策略设计。代谢水平和生物反应水平的整合

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this work metabolic engineering strategies for maximizing L-(-)-carnitine production by Escherichia coli based on the Biochemical System Theory (1-3) and the Indirect Optimization Method are presented (4).The model integrates the metabolic and the bioreactor levels using power-law formalism.Based on the S-system model,the Indirect Optimization Method was applied,leading to profiles of parameter values that are compatible with both the physiology of the cells and the bioreactor system operating conditions.This guarantees their viability and fitness and yields higher rates of L-(-)-carnitine production.Experimental results using a high cell density reactor were compared with optimized predictions from the Indirect Optimization Method.When two parameters (the dilution rate and the initial crotonobetaine concentration) were directly changed in the real experimental system to the prescribed optimum values,the system showed better performance in L-(-)-carnitine production (74% increase in production rate),in close agreement with the model's predictions.The model shows control points at macroscopic (reactor operation) and microscopic (molecular) levels where conversion and productivity can be increased.In accordance with the optimized solution,the next logical step to improve the L-(-)-carnitine production rate will involve metabolic engineering of the E.coli strain by overexpressing the carnitine transferase,CaiB,activity and the protein carrier,CaiT,responsible for substrate and product transport in and out of the cell.By this means it is predicted production may be enhanced by up to three times the original value.
机译:在这项工作中,提出了基于生化系统理论(1-3)和间接优化方法(4)的大肠杆菌最大程度地生产L-(-)-肉碱的代谢工程策略。该模型整合了代谢和生物反应器水平在S系统模型的基础上,应用了间接优化方法,从而得出了与细胞生理学和生物反应器系统操作条件均兼容的参数值配置文件,从而保证了它们的生存能力和适用性将高细胞密度反应器的实验结果与间接优化方法的优化预测进行比较,当直接改变两个参数(稀释率和巴豆甜菜碱初始浓度)时,可以得到更高的L-(-)-肉碱产量。实际实验系统达到规定的最佳值,该系统在L-(-)-肉碱生产中表现出更好的性能(增加74%生产率),与模型的预测非常吻合。模型显示了宏观(反应器操作)和微观(分子)水平的控制点,可以提高转化率和生产率。根据优化的解决方案,下一步需要改进的逻辑步骤L-(-)-肉碱的生产速率将通过过度表达肉碱转移酶,CaiB,活性和蛋白质载体,CaiT来参与大肠杆菌菌株的代谢工程,该酶负责底物和产物在细胞内和细胞外的转运。这意味着可以预测产量将增加多达原始值的三倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号