首页> 外文期刊>Vestnik, St. Petersburg University. Mathematics >On Sufficient Conditions for the Closure of an Elementary Net
【24h】

On Sufficient Conditions for the Closure of an Elementary Net

机译:关于封闭基本网的充分条件

获取原文
获取原文并翻译 | 示例

摘要

In the paper, the elementary net closure problem is considered. An elementary net (net without a diagonal) sigma = (sigma(ij))(i) (not equal) (j) of additive subgroups sigma(ij) of field k is called "closed" if elementary net group E(sigma) does not contain new elementary transvections. Elementary net sigma = (sigma(ij)) is called "supplemented" if table (with a diagonal) sigma = (sigma(ij)), 1 <= i, j <= n, is a (full) net for some additive subgroups sigma(ii) of field k. The supplemented elementary nets are closed. The necessary and sufficient condition for the supplementarity of elementary net sigma = (sigma(ij)) is the implementation of inclusions sigma(ij)sigma(ji)sigma(ij) subset of sigma(ij) (for any i not equal j). The question (Kourovka Notebook, Problem 19.63) is investigated of whether it true that, for closure of elementary net sigma = (sigma(ij)) it suffices to implement inclusions sigma(2)(ij)sigma(ji) subset of sigma(ij) for any i not equal j (here, (sigma(2)(ij) denotes the additive subgroup of field k generated by the squares from sigma(ij)). The elementary nets for which the latter inclusions are satisfied are called "weakly supplemented elementary nets." The concepts of supplemented and weakly supplemented elementary nets coincide for fields of odd characteristic. Thus, the aforementioned question of the sufficiency of weak supplementarity for the closure of an elementary net is relevant for the fields of characteristics 0 and 2. In this paper, examples of weakly supplemented but not supplemented elementary nets are constructed for the fields of characteristics 0 and 2. An example of a closed elementary net that is not weakly supplemented is constructed.
机译:在本文中,考虑了基本的净封闭问题。基本网(没有对角线的NET)Sigma =(Sigma(IJ))(I)(I)(I)的添加剂子组Sigma(IJ)被称为“关闭”,如果基本网组E(Sigma)不包含新的基本转扫描。基本Net Sigma =(Sigma(IJ))称为“补充”,如果表(具有对角线)Sigma =(Sigma(IJ)),1 <= i,j <= n是某些添加剂的(满)网亚群Sigma(ii)k。补充的基本网已关闭。基本净赛·锡格玛=(SIGMA(IJ))的必要和充分条件是纳格玛(IJ)Sigma(ji)Sigma(IJ)Sigma(IJ)的实施情况(对于任何我不等于J) 。问题(KOROVKA笔记本,问题19.63)是为了确定的是,对于基本净的净赛=(SIGMA(IJ)),它足以实施SIGMA(2)(IJ)SIGMA(JI)SIGMA( IJ)对于任何我不等于J(这里,(Sigma(2)(IJ)表示由Sigma(IJ)产生的正方形产生的字段K的添加剂子组)。后者夹杂物满足的基本网称为“弱补充的基本网。“补充和弱补充的基本网的概念与奇数特征的领域重合。因此,上述问题的弱点对基本网的薄弱补充性的问题与特征0和2的特征领域相关。在本文中,为特性0和2的特征领域构造了弱而未补充的基本网的实例。构建不弱补充的封闭基本网的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号