首页> 外文期刊>SIGKDD explorations >Training and Meta-Training Binary Neural Networks with Quantum Computing
【24h】

Training and Meta-Training Binary Neural Networks with Quantum Computing

机译:具有量子计算的培训和元培训二元神经网络

获取原文
获取原文并翻译 | 示例

摘要

Quantum computers promise significant advantages over classical computers for a number of different applications. We show that the complete loss function landscape of a neural network can be represented as the quantum state output by a quantum computer. We demonstrate this explicitly for a binary neural network and, further, show how a quantum computer can train the network by manipulating this state using a well-known algorithm known as quantum amplitude amplification. We further show that with minor adaptation, this method can also represent the meta-loss landscape of a number of neural network architectures simultaneously. We search this meta-loss landscape with the same method to simultaneously train and design a binary neural network.
机译:量子计算机对于许多不同的应用程序,对古典计算机的显着优势具有重要的优势。 我们表明神经网络的完全损失功能景观可以表示为量子计算机输出的量子状态。 我们明确地证明了二进制神经网络,进一步示出了量子计算机如何通过使用称为量子幅度放大的众所周知的算法操纵该状态来训练网络。 我们进一步表明,通过较小的自适应,该方法还可以同时代表多个神经网络架构的元损失景观。 我们使用相同的方法搜索此元损失景观,同时培训和设计二元神经网络。

著录项

  • 来源
    《SIGKDD explorations》 |2019年第udisk期|共8页
  • 作者单位

    Siemens Healthineers Digital Services Digital Technology and Innovation;

    Siemens Healthineers Digital Services Digital Technology and Innovation;

    Siemens Healthineers Digital Services Digital Technology and Innovation;

    Department of Computer Science University College;

    Siemens Healthineers Digital Services Digital Technology and Innovation;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TP274.2;
  • 关键词

    Neural networks; Quantum algorithms;

    机译:神经网络;量子算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号