首页> 外文期刊>SIAM Journal on Scientific Computing >MULTILEVEL SEQUENTIAL IMPORTANCE SAMPLING FOR RARE EVENT ESTIMATION
【24h】

MULTILEVEL SEQUENTIAL IMPORTANCE SAMPLING FOR RARE EVENT ESTIMATION

机译:罕见事件估计的多级顺序重要性抽样

获取原文
获取原文并翻译 | 示例

摘要

The estimation of the probability of rare events is an important task in reliability and risk assessment. We consider failure events that are expressed in terms of a limit state function, which depends on the solution of a partial differential equation (PDE). Since numerical evaluations of PDEs are computationally expensive, estimating such probabilities of failure by Monte Carlo sampling is intractable. We develop a novel estimator based on a sequential importance sampler using discretizations of PDE-based limit state functions with different accuracies. A twofold adaptive algorithm ensures that we obtain an estimate based on the desired discretization accuracy. Moreover, we suggest and study the choice of the Markov chain Monte Carlo kernel for use with sequential importance sampling. Instead of the popular adaptive conditional sampling method, we propose a new algorithm that uses independent proposals from an adaptively constructed von Mises-Fisher-Nakagami distribution.
机译:估计稀有事件的概率是可靠性和风险评估中的重要任务。 我们考虑以极限状态函数表示的故障事件,这取决于部分微分方程(PDE)的解。 由于PDE的数值评估是计算昂贵的,因此通过Monte Carlo采样估计这种失败的概率是棘手的。 我们使用具有不同精度的PDE的极限状态函数的离散化,基于顺序重要采样器开发一种新颖的估计。 双重的自适应算法确保我们基于所需的离散化精度获得估计。 此外,我们建议并研究马尔可夫链蒙特卡罗内核的选择,以便与顺序重视采样一起使用。 我们提出了一种新的算法,该算法使用自适应构建的Von Mises-Fisher-Nakagami分布的独立建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号