首页> 美国卫生研究院文献>The Journal of Chemical Physics >Adaptively biased sequential importance sampling for rare events in reaction networks with comparison to exact solutions from finite buffer dCME method
【2h】

Adaptively biased sequential importance sampling for rare events in reaction networks with comparison to exact solutions from finite buffer dCME method

机译:与反应有限网络dCME方法的精确解相比对反应网络中稀有事件进行自适应有偏连续重要性采样

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Critical events that occur rarely in biological processes are of great importance, but are challenging to study using Monte Carlo simulation. By introducing biases to reaction selection and reaction rates, weighted stochastic simulation algorithms based on importance sampling allow rare events to be sampled more effectively. However, existing methods do not address the important issue of barrier crossing, which often arises from multistable networks and systems with complex probability landscape. In addition, the proliferation of parameters and the associated computing cost pose significant problems. Here we introduce a general theoretical framework for obtaining optimized biases in sampling individual reactions for estimating probabilities of rare events. We further describe a practical algorithm called adaptively biased sequential importance sampling (ABSIS) method for efficient probability estimation. By adopting a look-ahead strategy and by enumerating short paths from the current state, we estimate the reaction-specific and state-specific forward and backward moving probabilities of the system, which are then used to bias reaction selections. The ABSIS algorithm can automatically detect barrier-crossing regions, and can adjust bias adaptively at different steps of the sampling process, with bias determined by the outcome of exhaustively generated short paths. In addition, there are only two bias parameters to be determined, regardless of the number of the reactions and the complexity of the network. We have applied the ABSIS method to four biochemical networks: the birth-death process, the reversible isomerization, the bistable Schlögl model, and the enzymatic futile cycle model. For comparison, we have also applied the finite buffer discrete chemical master equation (dCME) method recently developed to obtain exact numerical solutions of the underlying discrete chemical master equations of these problems. This allows us to assess sampling results objectively by comparing simulation results with true answers. Overall, ABSIS can accurately and efficiently estimate rare event probabilities for all examples, often with smaller variance than other importance sampling algorithms. The ABSIS method is general and can be applied to study rare events of other stochastic networks with complex probability landscape.
机译:至关重要的事件在生物学过程中很少发生,这一点非常重要,但使用蒙特卡洛模拟进行研究则具有挑战性。通过将偏差引入反应选择和反应速率,基于重要性抽样的加权随机模拟算法可以更有效地对稀有事件进行抽样。但是,现有方法无法解决障碍穿越的重要问题,障碍穿越通常是由具有稳定概率格局的多稳定网络和系统引起的。另外,参数的增加和相关的计算成本带来了严重的问题。在这里,我们介绍了一个通用的理论框架,该框架可用于在对单个反应进行采样以估计稀有事件的概率时获得最佳偏差。我们进一步描述了一种实用的算法,称为高效有效概率估计的自适应偏置序贯重要性抽样(ABSIS)方法。通过采用先行策略并枚举当前状态的短路径,我们估计了系统的反应特定和状态特定的前进和后退移动概率,然后将其用于偏向反应选择。 ABSIS算法可以自动检测穿越障碍的区域,并且可以在采样过程的不同步骤自适应地调整偏差,偏差由穷举生成的短路径的结果确定。另外,无论反应的数量和网络的复杂性如何,仅需确定两个偏置参数。我们已将ABSIS方法应用于四个生化网络:出生死亡过程,可逆异构化,双稳态Schlögl模型和酶促无效周期模型。为了进行比较,我们还应用了最近开发的有限缓冲离散化学主方程(dCME)方法来获得这些问题的基础离散化学主方程的精确数值解。这使我们能够通过将模拟结果与真实答案进行比较来客观地评估采样结果。总体而言,ABSIS可以准确高效地估算所有示例的稀有事件概率,而方差通常比其他重要度采样算法小。 ABSIS方法是通用的,可用于研究具有复杂概率格局的其他随机网络的稀有事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号