首页> 外文期刊>Random operators and stochastic equations >On the limiting spectral density of random matrices filled with stochastic processes
【24h】

On the limiting spectral density of random matrices filled with stochastic processes

机译:关于随机过程填充的随机矩阵的限制光谱密度

获取原文
获取原文并翻译 | 示例

摘要

We discuss the limiting spectral density of real symmetric random matrices.In contrast to standard random matrix theory, the upper diagonal entries are not assumed to be independent, but we will fill them with the entries of a stochastic process.Under assumptions on this process which are satisfied, e.g., by stationary Markov chains on finite sets, by stationary Gibbs measures on finite state spaces, or by Gaussian Markov processes, we show that the limiting spectral distribution depends on the way the matrix is filled with the stochastic process.If the filling is in a certain way compatible with the symmetry condition on the matrix, the limiting law of the empirical eigenvalue distribution is the well-known semi-circle law.For other fillings we show that the semi-circle law cannot be the limiting spectral density.
机译:我们讨论了真实对称随机矩阵的限制光谱密度。 与标准随机矩阵理论相比,上对角线条目未被假定为独立,但我们将填充它们的随机过程的条目。 在满足该过程的假设下,例如,通过在有限套装上的静止马尔可夫链条上,通过静止的GIBBS测量有限状态空间,或通过高斯马尔可夫进程,我们表明限制光谱分布取决于矩阵填充的方式 随机过程。 如果填充以与矩阵上的对称条件兼容的某种方式,则经验性特征值分布的限制规律是众所周知的半圈法。 对于其他填充,我们表明半圈法不能是限制光谱密度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号