...
首页> 外文期刊>Neural computing & applications >Genetic programming-assisted multi-scale optimization for multi-objective dynamic performance of laminated composites: the advantage of more elementary-level analyses
【24h】

Genetic programming-assisted multi-scale optimization for multi-objective dynamic performance of laminated composites: the advantage of more elementary-level analyses

机译:遗传编程辅助多尺度优化,用于层压复合材料的多目标动态性能:更多基本级别分析的优势

获取原文
获取原文并翻译 | 示例
           

摘要

High-fidelity multi-scale design optimization of many real-life applications in structural engineering still remains largely intractable due to the computationally intensive nature of numerical solvers like finite element method. Thus, in this paper, an alternate route of metamodel-based design optimization methodology is proposed in multi-scale framework based on a symbolic regression implemented using genetic programming (GP) coupled withd-optimal design. This approach drastically cuts the computational costs by replacing the finite element module with appropriately constructed robust and efficient metamodels. Resulting models are compact, have good interpretability and assume a free-form expression capable of capturing the non-linearly, complexity and vastness of the design space. Two robust nature-inspired optimization algorithms, viz. multi-objective genetic algorithm and multi-objective particle swarm optimization, are used to generate Pareto optimal solutions for several test problems with varying complexity. TOPSIS, a multi-criteria decision-making approach, is then applied to choose the best alternative among the Pareto optimal sets. Finally, the applicability of GP in efficiently tackling multi-scale optimization problems of composites is investigated, where a real-life scenario is explored by varying fractions of pertinent engineering materials to bring about property changes in the final composite structure across two different scales. The study reveals that a microscale optimization leads to better optimized solutions, demonstrating the advantage of carrying out a multi-scale optimization without any additional computational burden.
机译:由于有限元方法等数值求解器的计算密集型性质,高保真多尺度设计优化在结构工程中的许多现实寿命应用仍然很大程度上是难以相应的。因此,在本文中,基于使用基于遗传编程(GP)耦合的最优设计的符号回归,在多尺度框架中提出了一种基于元模型的设计优化方法的替代路由。这种方法通过用适当构造的鲁棒和高效的元典替换有限元模块来大幅度缩短计算成本。产生的模型具有很强的诠释,具有良好的解释性,并且假设能够捕获非线性,复杂性和设计空间的广泛的自由形式表达式。两个强大的自然灵感优化算法,viz。多目标遗传算法和多目标粒子群优化,用于生成帕累托最佳解决方案,以实现不同复杂性的几个测试问题。 Topsis是一种多标准决策方法,然后应用于帕累托最优集中的最佳替代方案。最后,研究了GP在有效地解决复合材料的多尺度优化问题中的适用性,其中通过不同的工程材料的分数来探讨现实生活场景,以实现两种不同尺度的最终复合结构的性能变化。该研究表明,微观优化导致更好的优化解决方案,展示了在没有任何额外计算负担的情况下进行多尺度优化的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号