首页> 外文期刊>CrystEngComm >Importance of crystal chemistry with interstitial site determining thermoelectric transport properties in pavonite homologue Cu-Bi-S compounds
【24h】

Importance of crystal chemistry with interstitial site determining thermoelectric transport properties in pavonite homologue Cu-Bi-S compounds

机译:晶体化学与填隙位置决定了方钠石同系Cu-Bi-S化合物中热电输运性质的重要性

获取原文
获取原文并翻译 | 示例

摘要

The crystal chemistry of complex structured pavonite homologue Cux+yBi5-yS8 (1.2 <= x <= 1.4, 0.4 <= y <= 0.55) compounds with various crystallographic atomic sites was investigated in the context of their thermoelectric properties. We clarified the origins of the electronic and thermal transport properties of Cux+yBi5-yS8 compounds based on the change in the composition, which is strongly correlated with the occupancy of each atomic site. Ab initio calculations revealed that the narrow gap n-type semiconducting nature of Cux+yBi5-yS8 compounds originates from the presence of interstitial Cu ions. Structural refinements combined with transport measurements revealed that asymmetrical disorders of interstitial Cu ions have a large anisotropic thermal displacement factor, leading to an intrinsically low value (similar to 0.49 W m(-1) K-1) and temperature-independent behavior of lattice thermal conductivity. Comprehensive structural analysis provided an elemental doping strategy focusing on interstitial sites. Thermoelectric properties were significantly enhanced by the simultaneous increase of power factor and decrease of lattice thermal conductivity. It is noted that structural factors, such as occupancy and thermal displacement parameter, of interstitial sites among the various crystallographic sites should be considered as primary characteristics in the crystal chemistry of complex structured crystals. Correspondingly, a peak ZT for the system was obtained in Cu1.576Zn0.024Bi4.6S8, which showed similar to 30% enhancement over that of the pristine Cux+yBi5-yS8 compound.
机译:在其热电特性的背景下,研究了具有各种晶体原子位点的复杂结构的pavonite同系物Cux + yBi5-yS8(1.2 <= x <= 1.4,0.4 <= y <= 0.55)化合物的晶体化学。我们根据组成的变化阐明了Cux + yBi5-yS8化合物的电子和热输运性质的起源,该变化与每个原子位点的占有率密切相关。从头算计算表明,Cux + yBi5-yS8化合物的窄间隙n型半导体性质源自间隙性Cu离子的存在。结合输运测量的结构改进表明,间隙Cu离子的不对称紊乱具有较大的各向异性热位移因子,从而导致固有的低值(类似于0.49 W m(-1)K-1)和晶格热的温度独立行为电导率。全面的结构分析提供了针对间隙位置的元素掺杂策略。通过同时增加功率因数和降低晶格热导率,热电性能得到显着增强。应当指出,各种晶体学位点之间的间隙位点的结构因素,例如占有率和热位移参数,应被认为是复杂结构晶体晶体化学的主要特征。相应地,在Cu1.576Zn0.024Bi4.6S8中获得了该系统的峰ZT,与原始Cux + yBi5-yS8化合物相比,显示出相似的30%的增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号