首页> 外文期刊>Materials science in semiconductor processing >Metallic Schottky barrier source/drain nanowire transistors using low temperature microwave annealed nickel, ytterbium, and titanium silicidation
【24h】

Metallic Schottky barrier source/drain nanowire transistors using low temperature microwave annealed nickel, ytterbium, and titanium silicidation

机译:使用低温微波退火镍,镱和钛硅化的金属肖特基散源/漏极纳米线晶体管

获取原文
获取原文并翻译 | 示例
           

摘要

This work presents the formation of intrinsic and dopant-segregated Schottky barrier nanowire transistors using microwave-annealed silicidation. To gain a sound understanding of applying the microwave annealing on fabricating metallic source/drain nanowire devices, three metals, nickel, ytterbium, and titanium, were utilized to form the Schottky barrier source/drain. Effects of microwave annealing on silicidation as well as segregation were intensively examined by comparing with those using rapid-thermal annealing. The drain current of ytterbium-based examples depend mildly on the applied microwave power from 200-400%, whereas the higher 300% or 400% power is most appropriate to optimize nickel-based nanowire transistors. The maximum 500% power is required on forming titanium silicidation for intrinsic or dopant-segregated nanowire devices. Relatively, temperature of 600 degrees C is required to form the nanowire source/drain with nickel or ytterbium, and temperature of 900 degrees C is needed for titanium-based devices. Experimental results show that the microwave annealing offers low-temperature processing against the rapid-thermal method to ensure favorable device characteristics, serving as a promising approach for 3D integration of CMOS technologies.
机译:该工作介绍了使用微波退火硅化的本征和掺杂剂隔离的肖特基屏障纳米线晶体管的形成。为了获得对制造金属源/漏极纳米线器件的微波退火应用微波退火的理解,利用三种金属,镍,镱和钛形成肖特基势垒源/排水管。微波退火对硅化物的影响以及使用快速热退火的人进行了集中检查偏析。基于YTTerbium的实施例的漏极电流依赖于200-400%的施加的微波功率,而300%或400%的功率最为合适,以优化基于镍的纳米线晶体管。形成用于固有或掺杂剂隔离的纳米线装置的钛硅化需要最大500%的功率。相对而言,需要600℃的温度来形成纳米线源/沥干,用镍或镱形成,钛基器件需要900℃的温度。实验结果表明,微波退火提供了针对快速热方法的低温处理,以确保有利的设备特性,作为CMOS技术的3D集成方法。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号