首页> 外文期刊>Materials Horizons >Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures
【24h】

Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures

机译:机器学习的内部电位使得石墨烯/硼烯异质结构中的晶格导热系数的第一原理多尺度建模

获取原文
获取原文并翻译 | 示例
           

摘要

One of the ultimate goals of computational modeling in condensed matter is to be able to accurately compute materials properties with minimal empirical information. First-principles approaches such as density functional theory (DFT) provide the best possible accuracy on electronic properties but they are limited to systems up to a few hundreds, or at most thousands of atoms. On the other hand, classical molecular dynamics (CMD) simulations and the finite element method (FEM) are extensively employed to study larger and more realistic systems, but conversely depend on empirical information. Here, we show that machine-learning interatomic potentials (MLIPs) trained over shortab initiomolecular dynamics trajectories enable first-principles multiscale modeling, in which DFT simulations can be hierarchically bridged to efficiently simulate macroscopic structures. As a case study, we analyze the lattice thermal conductivity of coplanar graphene/borophene heterostructures, recently synthesized experimentally (Sci. Adv., 2019,5, eaax6444), for which no viable classical modeling alternative is presently available. Our MLIP-based approach can efficiently predict the lattice thermal conductivity of graphene and borophene pristine phases, the thermal conductance of complex graphene/borophene interfaces and subsequently enable the study of effective thermal transport along the heterostructures at continuum level. This work highlights that MLIPs can be effectively and conveniently employed to enable first-principles multiscale modelingviahierarchical employment of DFT/CMD/FEM simulations, thus expanding the capability for computational design of novel nanostructures.
机译:冷凝物中计算建模的最终目标之一是能够以最小的经验信息精确计算材料性质。诸如密度泛函理论(DFT)之类的第一原理方法提供了对电子特性的最佳精度,但它们仅限于高达几百或大约成千上万的原子。另一方面,经典分子动力学(CMD)模拟和有限元方法(FEM)被广泛用于研究更大和更现实的系统,但相反地取决于经验信息。在这里,我们表明,通过缩写初始动力学轨迹训练的机器学习的内部电位(MLIPS)使得第一原理多尺度建模使得可以分层桥接以有效地模拟宏观结构。作为一个案例研究,我们分析了共甘蓝石墨烯/硼烯异质结构的晶格导热率,最近通过实验合成(SCI。ADC。,2019,5,EAAX6444),目前没有可行的经典建模替代品。基于MLIP的方法可以有效地预测石墨烯和硼硫丁烯阶段的晶格导热系数,复合石墨烯/硼烯界面的热传导,随后能够沿连续水平的异质结构研究有效的热传输。这项工作强调了MLIP可以有效地使用MLIP来实现DFT / CMD / FEM模拟的第一原理MultiScale ModelingViaHiaShiaShioShiemshiemmiesmment,从而扩展了新型纳米结构的计算设计的能力。

著录项

  • 来源
    《Materials Horizons》 |2020年第9期|共9页
  • 作者单位

    Leibniz Univ Hannover Chair Computat Sci &

    Simulat Technol Dept Math &

    Phys Appelstr 11 D-30157 Hannover Germany;

    Skolkovo Innovat Ctr Skolkovo Inst Sci &

    Technol Nobel St 3 Moscow 143026 Russia;

    CSIC Catalan Inst Nanosci &

    Nanotechnol ICN2 Campus UAB Barcelona 08193 Spain;

    Tongji Univ Coll Civil Engn Dept Geotech Engn Shanghai Peoples R China;

    Leibniz Univ Hannover Chair Computat Sci &

    Simulat Technol Dept Math &

    Phys Appelstr 11 D-30157 Hannover Germany;

    Skolkovo Innovat Ctr Skolkovo Inst Sci &

    Technol Nobel St 3 Moscow 143026 Russia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号