...
首页> 外文期刊>ACS nano >Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing
【24h】

Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing

机译:通过电子束光刻和纳米转移印刷制成的表面增强拉曼光谱衬底

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The development of quantitative, highly sensitive surface-enhanced Raman spectroscopy (SERS) substrates requires control over size, shape, and position of metal nanoparticles. Despite the fact that SERS has gained the reputation as an information-rich spectroscopy for detection of many classes of analytes, in some isolated instances down to the single molecule detection limit, its future development depends critically on techniques for nanofabrication. Herein, an unconventional nanofabrication approach is used to produce efficient SERS substrates. Metallic nanopatterns of silver disks are transferred from a stamp onto poly(dimethysiloxane) (PDMS) to create nanocomposite substrates with regular periodic morphologies. The stamp with periodic arrays of square, triangular, and elliptical pillars is created via electron beam lithography (EBL) of ma-N 2403 resist. A modified cyclodextrin is thermally evaporated onto the stamp to overcome the adhesive nature of the EBL resist and to function as a releasing layer. Subsequently, Ag is physically vapor deposited onto the stamp at a controlled rate and thickness and used directly for nanotransfer printing (nTP). Stamps, substrates, and the efficiency of the nTP process were explored by scanning electron microscopy. Transferred Ag nanodisk-PDMS substrates are studied by SERS using Rhodamine 6G as the probe analyte. There are observed optimal conditions involving both Ag and cyclodextrin thickness. The SERS response of metallic nanodisks of various shapes and sizes on the original stamp is compared to the corresponding nTP created substrates with similar trends observed. Limits of detection for crystal violet and Mitoxantrone are approximately 10~(-8) and 10~(-9) M, respectively. As an innovative feature of this approach, we demonstrate that physical manipulation of the PDMS post-nTP can be used to after morphology, e.g., to change internanodisk spacing. Additionally, stamps are shown to be reusable after the nTP process, adding the potential to scale-up regular morphology substrates by a stamp-and-repeat methodology.
机译:定量,高度敏感的表面增强拉曼光谱(SERS)衬底的发展要求控制金属纳米颗粒的大小,形状和位置。尽管SERS作为检测多种类别分析物的信息丰富的光谱学而享誉盛名,但在某些孤立的情况下,甚至可以检测到单分子检测极限,但其未来的发展在很大程度上取决于纳米加工技术。在本文中,使用非常规的纳米制造方法来生产有效的SERS衬底。将银盘的金属纳米图案从印模转移到聚二甲基硅氧烷(PDMS)上,以形成具有规则周期性形态的纳米复合材料基材。通过ma-N 2403抗蚀剂的电子束光刻(EBL)创建具有正方形,三角形和椭圆形柱体周期性排列的印模。将改性的环糊精热蒸发到印模上,以克服EBL抗蚀剂的粘附性,并用作脱模层。随后,将Ag以受控的速率和厚度物理气相沉积到压模上,并直接用于纳米转移印刷(nTP)。通过扫描电子显微镜研究了印模,基材和nTP工艺的效率。使用罗丹明6G作为探针分析物,通过SERS研究了转移的Ag纳米盘-PDMS底物。观察到涉及银和环糊精厚度的最佳条件。将原始图章上各种形状和大小的金属纳米磁盘的SERS响应与相应的nTP创建的基材进行比较,观察到相似的趋势。结晶紫和米托蒽醌的检出限分别约为10〜(-8)M和10〜(-9)M。作为此方法的创新功能,我们证明了对nTP后PDMS的物理操作可用于形态学改变之后,例如,改变椎间盘间隔。此外,图章显示在nTP处理后可以重复使用,从而通过图章重复方法增加了放大常规形态衬底的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号