首页> 外文期刊>International Journal of Applied Engineering Research >Deep-CNN Architecture for Error Minimisation in Video Scaling
【24h】

Deep-CNN Architecture for Error Minimisation in Video Scaling

机译:视频缩放中误差最小化的深度CNN架构

获取原文
获取原文并翻译 | 示例

摘要

People like to watch high-quality videos, so high-resolution videos are in more demand from few years. The techniques like DWT which are used to obtain the high-quality videos results with high distortions in videos which ends in low resolution. But there are numerous super-resolution techniques in signal processing to obtain the high-resolution frames from the multiple low resolution frames without using any external hardware. Super-resolution techniques offer very cheap and efficient ways to obtain high-resolution frames. Convolutional Neural Networks (CNN) technique is most widely used Deep-Learning technique for various application such as feature extraction, face detection, image classification, image scaling etc. Removing a noise from the frame is a very difficult task, so a CNN is introduced with super-resolution technique. Moreover, CNN technique can easily train bulky datasets, remove blurriness and can provide the end-to-end mapping between high and low-resolution patches. Therefore, here, we have introduced an efficient and robust Reconstruction Error Minimization Convolution Neural Network Architecture. Here, our model is highly efficient to handle large datasets and provide visually attractive results compared to existing state techniques using CNN architecture. The proposed CNN model has an additional unit of Pipelined structure to increase the processing speed operating on large datasets. Our experimental results verify that our model outperforms other existing state of-art-techniques in terms of Peak Signal to Noise Ratio-PSNR, Structural Similarity Index Matrices - SSIM and visual quality appearance.
机译:人们喜欢观看高质量的视频,因此高分辨率视频从几年的需求量更大。 DWT的技术用于获得高质量视频,在视频中具有高扭曲,其在低分辨率下结束。但是,在信号处理中存在许多超级分辨率技术,以在不使用任何外部硬件的情况下从多个低分辨率帧获得高分辨率帧。超分辨率技术提供了非常便宜和高效的方法来获得高分辨率框架。卷积神经网络(CNN)技术是各种应用的深度学习技术,例如特征提取,面部检测,图像分类,图像缩放等。从框架中删除噪声是一项非常艰巨的任务,所以介绍了一个CNN具有超分辨率技术。此外,CNN技术可以容易地培训庞大的数据集,去除模糊,并且可以在高分辨率和低分辨率贴片之间提供端到端映射。因此,在这里,我们引入了一种高效且坚固的重建误差最小化卷积神经网络架构。在这里,我们的模型高效地处理大型数据集,并与使用CNN架构的现有状态技术相比提供视觉吸引力的结果。所提出的CNN模型具有额外的流水线结构单元,以增加在大型数据集上运行的处理速度。我们的实验结果验证了我们的模型在峰值信号与噪声比 - PSNR,结构相似度指标矩阵 - SSIM和视觉质量外观方面占据了其他现有的技术技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号