首页> 外文期刊>Advances in applied probability >Nonexplosion of a class of semilinear equations via branching particle representations
【24h】

Nonexplosion of a class of semilinear equations via branching particle representations

机译:通过分支粒子表示对一类半线性方程组不爆炸

获取原文
获取原文并翻译 | 示例

摘要

We consider a branching particle system where an individual particle gives birth to a random number of offspring at the place where it dies. The probability distribution of the number of offspring is given by P-k, k = 2, 3,.... The corresponding branching process is related to the semilinear partial differential equation partial derivative u/partial derivative t = Au(t, x) + Sigma(infinity)(k=2) p(k)(x)u(k)(t, x) for x is an element of R-d, where A is the infinitesimal generator of a multiplicative semigroup and the p(k)s, k = 2, 3, ..., are nonnegative functions such that Sigma(k) p(k) =1. obtain sufficient conditions for the existence of global positive solutions to semilinear equations of this form. Our results extend previous work by Nagasawa and Sirao (1969) and others.
机译:我们考虑一个分支粒子系统,其中单个粒子在其死亡的地方生出随机数量的后代。子代数的概率分布由Pk给出,k = 2,3,...。相应的分支过程与半线性偏微分方程偏导数u /偏导数t = Au(t,x)+有关x的Sigma(infinity)(k = 2)p(k)(x)u(k)(t,x)是Rd的元素,其中A是乘法半群的无穷小生成器,而p(k)s ,k = 2,3,...,是非负函数,因此Sigma(k)p(k)= 1。为这种形式的半线性方程的整体正解的存在获得充分的条件。我们的结果扩展了Nagasawa和Sirao(1969)等人的先前工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号