首页> 外文期刊>Arkiv for matematik >On the spectrum of the multiplicative Hilbert matrix
【24h】

On the spectrum of the multiplicative Hilbert matrix

机译:关于乘法矩阵的谱

获取原文
获取原文并翻译 | 示例

摘要

We study the multiplicative Hilbert matrix, i.e. the infinite matrix with entries (root mnlog(mn))(-1) for m, n = 2. This matrix was recently introduced within the context of the theory of Dirichlet series, and it was shown that the multiplicative Hilbert matrix has no eigenvalues and that its continuous spectrum coincides with [0, pi]. Here we prove that the multiplicative Hilbert matrix has no singular continuous spectrum and that its absolutely continuous spectrum has multiplicity one. Our argument relies on spectral perturbation theory and scattering theory. Finding an explicit diagonalisation of the multiplicative Hilbert matrix remains an interesting open problem.
机译:我们研究了乘法的Hilbert矩阵,即具有条目的无限矩阵(Root Mnlog(Mn))( - 1),N& = 2.最近在Dirichlet系列理论的背景下引入了该矩阵,以及它 结果表明,倍增性Hilbert基质没有特征值,并且其连续谱与[0,Pi]一致。 在这里,我们证明了乘法的Hilbert矩阵没有奇异的连续频谱,并且其绝对连续的频谱具有多个。 我们的论点依赖于光谱扰动理论和散射理论。 找到乘法的显式对角度矩阵仍然是一个有趣的开放问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号