首页> 外文期刊>Advanced Science Letters >Hidden Markov Model and Learning Vector Quantization for Indonesian Speech Recognition: A Comparative Study
【24h】

Hidden Markov Model and Learning Vector Quantization for Indonesian Speech Recognition: A Comparative Study

机译:黑暗的马尔可夫模型和学习矢量量化为印度尼西亚语音识别:比较研究

获取原文
获取原文并翻译 | 示例

摘要

A characteristic of a language is different one another. In order to make an application of speech recognition required a robust method for recognizing the characteristic of a language. However, the method, that proven has a high accuracy for English speech recognition, results highaccuracy for Indonesian speech recognition. The aim of this research is to compare two methods including Hidden Markov Model (HMM) and Learning Vector Quantization (LVQ). The research consists of 2 steps, i.e., (i) the development of Indonesian speech recognition based on HMM and LVQ and (ii)performance comparison against both methods. Meanwhile, there are 4 sub-processes in the speech recognition development, namely input process, Mel-Frequency Cepstral Coefficients (MFCC) feature extraction process, training process, and testing process. Subsequently, the results of both testingprocesses are compared each other. The experiment is conducted for 300 data and the final results show that the performance of HMM method is about 97.67% for 20 MFCC coefficients and 11 HMM states.
机译:一种语言的特征彼此不同。为了使语音识别应用需要一种稳定语言特征的鲁棒方法。然而,这项方法,这一证据具有高精度的英语语音识别,结果为印度尼西亚语音识别的结果。该研究的目的是比较包括隐马尔可夫模型(HMM)的两种方法和学习矢量量化(LVQ)。该研究包括2个步骤,即(i)基于HMM和LVQ的印度尼西亚语音识别和(ii)对两种方法的性能比较的发展。同时,语音识别开发中有4个子过程,即输入过程,熔融频率谱系数(MFCC)特征提取过程,训练过程和测试过程。随后,彼此比较两种测试过程的结果。实验进行了300个数据,最终结果表明,20 MFCC系数和11次恒生状态的HMM方法的性能约为97.67%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号