首页> 外文期刊>Pattern recognition letters >Unconstrained Farsi handwritten word recognition using fuzzy vector quantization and hidden Markov models
【24h】

Unconstrained Farsi handwritten word recognition using fuzzy vector quantization and hidden Markov models

机译:使用模糊矢量量化和隐马尔可夫模型的无约束波斯语手写单词识别

获取原文
获取原文并翻译 | 示例

摘要

An unconstrained Farsi handwritten word recognition system based on fuzzy vector quantization (FVQ) and hidden Markov model (HMM) for reading city names in postal addresses is presented. Preprocessing techniques including binarization, noise removal, slope correction and baseline estimation are described. Each word image is represented by its contour information. The histogram of chain code slopes of the image strips (frames), scanned from right to left by a sliding window, is used as feature vectors. Fuzzy c-means (FCM) clustering is used for generating a fuzzy codebook. A separate HMM is trained by modified Baum Welch algorithm for each city name. A test image is recognized by finding the best match (likelihood) between the image and all of the HMM word models using forward algorithm. Experimental results show the advantages of using FVQ/HMM recognizer engine instead of conventional discrete HMMs.
机译:提出了一种基于模糊矢量量化(FVQ)和隐马尔可夫模型(HMM)的波斯语手写单词识别系统,用于读取邮政地址中的城市名称。描述了包括二进制化,噪声去除,斜率校正和基线估计在内的预处理技术。每个单词图像由其轮廓信息表示。通过滑动窗口从右到左扫描的图像带(帧)的链码斜率直方图用作特征向量。模糊c均值(FCM)聚类用于生成模糊码本。通过修改的Baum Welch算法为每个城市名称训练一个单独的HMM。通过使用正向算法找到图像与所有HMM词模型之间的最佳匹配(似然性),可以识别测试图像。实验结果表明,使用FVQ / HMM识别器引擎代替常规离散HMM的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号