首页> 外文期刊>Condition Monitor >In-service railway track condition monitoring by analysis of axle-box accelerations for small- to medium-sized infrastructure operators
【24h】

In-service railway track condition monitoring by analysis of axle-box accelerations for small- to medium-sized infrastructure operators

机译:通过分析小于中型基础设施运营商的轴箱加速度在 - 役铁路轨道状态监测

获取原文
获取原文并翻译 | 示例

摘要

About 50% of the lifecycle costs of railway tracks are caused by maintenance actions, which are currently typically conducted within corrective maintenance schemes. The accelerating digitalisation and development of low-cost sensors provide the opportunity, especially for small infrastructure operators, to introduce cost-effective track condition monitoring on a daily basis, utilising embedded sensors on their in-service vehicles. This will allow the challenging step forward from reactive corrections to proactive preventative maintenance actions to significantly reduce maintenance costs. The authors present the overall framework and initial results of a prototype implementation of the complete system for quasi-continuous condition monitoring of short-wavelength (a few centimetres to a few metres) defects of railway tracks, such as rail corrugation, from the embedded sensor to the visualised data analysis result. Georeferenced triaxial axle-box accelerations are gathered in the frequency range from 0.8 Hz to 8000 Hz using a prototype measurement system on a shunter locomotive operating on the railway network of Braunschweig inland harbour in Germany (with a total track length of about 15 km). The implementation of the prototype in an operational environment provides data covering four months of shunting operation to develop and evaluate data analysis algorithms. The acceleration sensor data is combined with further relevant data, such as the digital map of the railway infrastructure and other operational data, to be prepared for data analysis by the authors' prototype implementation of a land-side data management system. Results of the land-side data analysis chain are presented, including the track-selective georeferencing by multi-sensor fusion, the extraction of relevant features from the axle-box acceleration data for pattern recognition and further intelligent data analysis to provide spatiotemporal information about track conditions. The results obtained are finally visualised for the infrastructure operator by the data management web front-end.
机译:大约50%的铁路轨道的生命周期成本是由维护动作引起的,目前通常在纠正性维护方案中进行。低成本传感器的加速数字化和开发提供了机会,特别是对于小型基础设施运营商,每天使用嵌入式传感器来引入经济高效的轨道状态监测。这将使挑战性逐步从反应性校正到主动预防性维护,以显着降低维护成本。作者介绍了全系统的原型实施的整体框架和初始结果,用于从嵌入式传感器从嵌入式传感器(如轨道波涛汹涌)的短波长(几厘米到几米)缺陷的缺陷到可视化数据分析结果。通过在德国布劳伦奇港内陆港铁路网络的铁路网络运营的工厂机车上运行的原型测量系统,地理位置的三轴轴箱加速度从0.8Hz到8000Hz聚集在0.8Hz至8000Hz。在操作环境中实现原型的实现提供了四个月的分流操作来开发和评估数据分析算法。加速度传感器数据与进一步的相关数据相结合,例如铁路基础设施和其他操作数据的数字地图,以便通过陆地数据管理系统的作者原型实现来准备进行数据分析。提出了陆地数据分析链的结果,包括多传感器融合的轨道选择性地地理化,从轴箱加速度数据提取相关特征,用于模式识别和进一步的智能数据分析,以提供关于轨道的时空信息状况。最终通过数据管理Web前端为基础设施运营商进行了可视化所获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号