首页> 外文期刊>Computers & Fluids >Turbocharger turbine and exhaust manifold flow computation with the Space-Time Variational Multiscale Method and Isogeometric Analysis
【24h】

Turbocharger turbine and exhaust manifold flow computation with the Space-Time Variational Multiscale Method and Isogeometric Analysis

机译:涡轮增压器涡轮和排气歧管流量计算时空变化多尺度方法和异诊分析

获取原文
获取原文并翻译 | 示例
           

摘要

We address the computational challenges encountered in turbocharger turbine and exhaust manifold flow analysis. The core computational method is the Space-Time Variational Multiscale (ST-VMS) method, and the other key methods are the ST Isogeometric Analysis (ST-IGA), ST Slip Interface (ST-SI) method, ST/NURBS Mesh Update Method (STNMUM), and a general-purpose NURBS mesh generation method for complex geometries. The ST framework, in a general context, provides higher-order accuracy. The VMS feature of the ST-VMS addresses the computational challenges associated with the multiscale nature of the unsteady flow in the manifold and turbine, and the moving-mesh feature of the ST framework enables high-resolution computation near the rotor surface. The ST-SI enables moving-mesh computation of the spinning rotor. The mesh covering the rotor spins with it, and the SI between the spinning mesh and the rest of the mesh accurately connects the two sides of the solution. The ST-IGA enables more accurate representation of the turbine and manifold geometries and increased accuracy in the flow solution. The STNMUM enables exact representation of the mesh rotation. The general-purpose NURBS mesh generation method makes it easier to deal with the complex geometries we have here. An SI also provides mesh generation flexibility in a general context by accurately connecting the two sides of the solution computed over nonmatching meshes. That is enabling us to use nonmatching NURBS meshes here. Stabilization parameters and element length definitions play a significant role in the ST-VMS and ST-SI. For the ST-VMS, we use the stabilization parameters introduced recently, and for the ST-SI, the element length definition we are introducing here. The model we actually compute with includes the exhaust gas purifier, which makes the turbine outflow conditions more realistic. We compute the flow for a full intake/exhaust cycle, which is much longer than the turbine rotation cycle because of high rotation speeds, and the long duration required is an additional computational challenge. The computation demonstrates that the methods we use here are very effective in this class of challenging flow analyses. (C) 2018 The Authors. Published by Elsevier Ltd.
机译:我们解决了涡轮增压器涡轮机和排气歧管流动分析中遇到的计算挑战。核心计算方法是时空变化多尺度(ST-VMS)方法,另一个关键方法是ST ISOGEMETIC分析(ST-IGA),ST滑动接口(ST-SI)方法,ST / NURBS网格更新方法(STNMUM),以及复杂几何形状的通用NURBS网格生成方法。在一般上下文中,ST框架提供更高级的精度。 ST-VM的VMS特征解决了与歧管和涡轮机中的不稳定流的多尺度性质相关的计算挑战,并且ST框架的移动网格特征使得能够在转子表面附近的高分辨率计算。 ST-SI能够实现纺纱转子的移动网格计算。覆盖转子旋转的网格用它旋转,并且纺丝网之间的Si和啮合的其余部分精确地连接溶液的两侧。 ST-IGA使得涡轮机和歧管几何形状的更准确表示,并提高流动解决方案的精度。 STNMUM能够精确表示网格旋转。通用NURBS网格生成方法使其更容易处理我们在此处的复杂几何形状。 Si还通过准确地连接在非匹配网格上计算的解决方案的两侧,在一般上下文中提供网格产生灵活性。这使我们能够在这里使用非匹配的NURBS网格。稳定参数和元素长度定义在ST-VM和ST-SI中发挥着重要作用。对于ST-VM,我们使用最近引入的稳定参数,以及我们在此引入的元素长度定义。我们实际计算的模型包括废气净化器,这使得涡轮流出条件更加逼真。我们计算出全进气/排气循环的流量,这比旋转速度高,比涡轮机旋转周期长得多,并且所需的长时间是额外的计算挑战。计算表明,我们在此处使用的方法在这类具有挑战性的流动分析中非常有效。 (c)2018作者。 elsevier有限公司出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号