首页> 外文期刊>Computers in Biology and Medicine >Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network
【24h】

Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network

机译:具有深卷积神经网络的多模式MR图像脑转移的自动检测与分割

获取原文
获取原文并翻译 | 示例

摘要

Stereotactic treatments are today the reference techniques for the irradiation of brain metastases in radiotherapy. The dose per fraction is very high, and delivered in small volumes (diameter 1 cm). As part of these treatments, effective detection and precise segmentation of lesions are imperative. Many methods based on deep-learning approaches have been developed for the automatic segmentation of gliomas, but very little for that of brain metastases. We adapted an existing 3D convolutional neural network (DeepMedic) to detect and segment brain metastases on MRI. At first, we sought to adapt the network parameters to brain metastases. We then explored the single or combined use of different MRI modalities, by evaluating network performance in terms of detection and segmentation. We also studied the interest of increasing the database with virtual patients or of using an additional database in which the active parts of the metastases are separated from the necrotic parts. Our results indicated that a deep network approach is promising for the detection and the segmentation of brain metastases on multimodal MRI.
机译:立体定向治疗如今,放疗中脑转移辐射的参考技术。每馏分的剂量非常高,并且以小体积(直径<1cm)递送。作为这些治疗的一部分,病变的有效检测和精确分割是必不可少的。基于深度学习方法的许多方法已经为胶质瘤的自动分割开发,但对于脑转移而言非常少。我们改编了现有的3D卷积神经网络(DeepMedic)来检测MRI上的脑转移。首先,我们寻求将网络参数调整为脑转移。然后,我们通过在检测和分割方面评估网络性能来探索不同的MRI模式的单一或结合使用。我们还研究了使用虚拟患者增加数据库的兴趣或使用额外的数据库,其中转移的活性部分与坏死部分分离。我们的结果表明,深度网络方法是对多峰MRI对脑转移的检测和分割的开心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号