...
首页> 外文期刊>The Journal of Experimental Biology >Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke
【24h】

Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke

机译:外部潜水潜力诱导卒中行走经济改善的生物力学机制

获取原文
获取原文并翻译 | 示例

摘要

Stroke-induced hemiparetic gait is characteristically asymmetric and metabolically expensive. Weakness and impaired control of the paretic ankle contribute to reduced forward propulsion and ground clearance - walking subtasks critical for safe and efficient locomotion. Targeted gait interventions that improve paretic ankle function after stroke are therefore warranted. We have developed textile-based, soft wearable robots that transmit mechanical power generated by off-board or body-worn actuators to the paretic ankle using Bowden cables (soft exosuits) and have demonstrated the exosuits can overcome deficits in paretic limb forward propulsion and ground clearance, ultimately reducing the metabolic cost of hemiparetic walking. This study elucidates the biomechanical mechanisms underlying exosuit-induced reductions in metabolic power. We evaluated the relationships between exosuit-induced changes in the body center of mass (COM) power generated by each limb, individual joint power and metabolic power. Compared with walking with an exosuit unpowered, exosuit assistance produced more symmetrical COM power generation during the critical period of the step-to-step transition (22.4 +/- 6.4% more symmetric). Changes in individual limb COM power were related to changes in paretic (R-2=0.83, P=0.004) and non-paretic (R-2=0.73, P=0.014) ankle power. Interestingly, despite the exosuit providing direct assistance to only the paretic limb, changes in metabolic power were related to changes in non-paretic limb COM power (R-2=0.80, P=0.007), not paretic limb COM power (P&0.05). These findings contribute to a fundamental understanding of how individuals post-stroke interact with an exosuit to reduce the metabolic cost of hemiparetic walking.
机译:脑卒中诱导的偏近步态特性是不对称的,代谢昂贵。对瘫痪脚踝的弱点和受损控制有助于减少前向推进和地间隙 - 用于安全和有效的运动的致力于性的行走子特劳。因此,有针对性的步态干预,因此有必要改善脑卒中后的窥探脚踝功能。我们开发了纺织品,柔软的可穿戴机器人,使用鲍登电缆(柔软的外侧)向渐进式脚踝传输由外壳或身体磨损的执行器产生的机械动力,并且已经证明了exosuits可以克服瘫痪肢体前向动力和地面的缺陷清关,最终降低了偏瘫行走的代谢成本。本研究阐明了外源诱导的代谢功率降低的生物力学机制。我们评估了由每个肢体,单个接合电源和代谢功率产生的体重(COM)功率的身体中心之间的外源诱导变化之间的关系。与exosuit无动力的行走相比,exosuit辅助在阶梯过渡的关键期间产生了更多对称的COM发电(22.4 +/- 6.4%的对称)。单个肢体COM电源的变化与静脉内的变化有关(R-2 = 0.83,p = 0.004)和非剖视(R-2 = 0.73,P = 0.014)踝部电力。有趣的是,尽管外来才能提供直接辅助的瘫痪肢体,但代谢功率的变化与非分析肢体COM电源的变化有关(R-2 = 0.80,P = 0.007),而不是垂直肢体COM POWER(P& GT ; 0.05)。这些发现有助于对中风后术后与外来牙接相互作用的根本理解,以降低偏瘫行走的代谢成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号