首页> 外文期刊>The Journal of Chemical Physics >Knotting probability of self-avoiding polygons under a topological constraint
【24h】

Knotting probability of self-avoiding polygons under a topological constraint

机译:拓扑约束下自避险多边形的打结概率

获取原文
获取原文并翻译 | 示例

摘要

We define the knotting probability of a knot K by the probability for a random polygon or self-avoiding polygon (SAP) of N segments having the knot type K. We show fundamental and generic properties of the knotting probability particularly its dependence on the excluded volume. We investigate them for the SAP consisting of hard cylindrical segments of unit length and radius r(ex). For various prime and composite knots, we numerically show that a compact formula describes the knotting probabilities for the cylindrical SAP as a function of segment number N and radius r(ex). It connects the small-N to the large-N behavior and even to lattice knots in the case of large values of radius. As the excluded volume increases, the maximum of the knotting probability decreases for prime knots except for the trefoil knot. If it is large, the trefoil knot and its descendants are dominant among the nontrivial knots in the SAP. From the factorization property of the knotting probability, we derive a sum rule among the estimates of a fitting parameter for all prime knots, which suggests the local knot picture and the dominance of the trefoil knot in the case of large excluded volumes. Here we remark that the cylindrical SAP gives a model of circular DNA which is negatively charged and semiflexible, where radius r(ex) corresponds to the screening length.
机译:我们通过具有结型K的N个区段的随机多边形或自避免多边形(SAP)的概率来定义结k的焦点概率。我们显示了焦结概率的基本和通用性质,特别是其对排除的体积的依赖性。我们研究了由单位长度和半径R(ex)的硬圆柱片组成的SAP。对于各种素数和复合结,我们在数值上表明紧凑型公式描述了圆柱形SAP作为段数N和半径R(ex)的函数的结概率。它将小-N与大n行为连接,甚至在大的半径值的情况下连接到晶格结。随着排斥的体积增加,除了三轴结之外的粉末概率的最大值降低。如果它很大,则三叶子结及其后代在SAP中的非竞争结中是显性的。从焦结概率的分解性,我们推导了所有主要结的拟合参数的估计中的总和规则,这表明了局部结图像和在大型排除体积的情况下的三叶子结的优势。在这里,我们备注,圆柱形SAP给出了圆形DNA的模型,其带负电和半径,其中半径R(ex)对应于筛分长度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号