首页> 外文期刊>Reactive & Functional Polymers >Bimodality in the knotting probability of semiflexible rings suggested by mapping with self-avoiding polygons
【24h】

Bimodality in the knotting probability of semiflexible rings suggested by mapping with self-avoiding polygons

机译:通过自避免多边形映射建议的半柔环打结概率的双峰性

获取原文
获取原文并翻译 | 示例

摘要

We use a simple physical mapping to adapt the known asymptotic expressions for the knotting probabilities of self-avoiding polygons to the case of semiflexible rings of beads. We thus obtain analytical expressions that approximate the abundance of the simplest knots as a function of the length and bending rigidity of the rings. We validate the predictions against previously published data from stochastic simulations of rings of beads showing that they reproduce the intriguing non-monotonic dependence of knotting probability on bending rigidity. The mapping thus provides a useful theoretical tool not only for a physically-transparent interpretation of previous results, but especially to predict the knotting probabilities for previously unexplored combinations of chain lengths and bending rigidities. In particular, our mapping suggests that for rings longer than 20,000 beads, the rigidity-dependent knotting probability profile switches from unimodal to bimodal.
机译:我们使用简单的物理映射将已知渐近表达式用于自避免多边形的打结概率,以适应半柔性小珠环的情况。因此,我们获得了根据环的长度和弯曲刚度来近似最简单结的丰度的解析表达式。我们根据珠子环的随机模拟对先前发布的数据验证了预测,结果表明它们再现了打结概率对弯曲刚度的有趣的非单调依赖性。因此,该映射不仅为先前结果的物理透明解释提供了有用的理论工具,而且尤其为预测链长度和弯曲刚度的先前未探索组合的打结概率提供了有用的理论工具。尤其是,我们的映射建议,对于长于20,000个珠子的环,取决于刚度的打结概率曲线将从单峰转换为双峰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号