首页> 外文期刊>The Journal of Chemical Physics >A two-step biopolymer nucleation model shows a nonequilibrium critical point
【24h】

A two-step biopolymer nucleation model shows a nonequilibrium critical point

机译:两步生物聚合物成核模型显示非突触临界点

获取原文
获取原文并翻译 | 示例
           

摘要

Biopolymer self-assembly pathways are complicated by the ability of their monomeric subunits to adopt different conformational states. This means nucleation often involves a two-step mechanism where the monomers first condense to form a metastable intermediate, which then converts to a stable polymer by conformational rearrangement of constituent monomers. Nucleation intermediates play a causative role in amyloid diseases such as Alzheimer's and Parkinson's. While existing mathematical models neglect the conversion dynamics, experiments show that conversion events frequently occur on comparable timescales to the condensation of intermediates and growth of mature polymers and thus cannot be ignored. We present a model that explicitly accounts for simultaneous assembly and conversion. To describe conversion, we propose an experimentally motivated initiation-propagation mechanism in which the stable phase arises locally within the intermediate and then spreads by nearest-neighbor interactions, in a manner analogous to one-dimensional Glauber dynamics. Our analysis shows that the competing timescales of assembly and conversion result in a nonequilibrium critical point, separating a regime where intermediates are kinetically unstable from one where conformationally mixed intermediates accumulate. This strongly affects the accumulation rate of the stable biopolymer phase. Our model is uniquely able to explain experimental phenomena such as the formation of mixed intermediates and abrupt changes in the scaling exponent gamma, which relates the total monomer concentration to the accumulation rate of the stable phase. This provides a first step toward a general model of two-step biopolymer nucleation, which can quantitatively predict the concentration and composition of biologically crucial intermediates. (c) 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
机译:生物聚合物自组装途径是通过它们的单体亚基采取不同的构象状态的能力变得复杂。这意味着经常成核涉及两步机制其中单体第一缩合形成亚稳中间体,其然后由组成单体的构象重排转变成稳定的聚合物。核中间体发挥淀粉样疾病如阿尔茨海默氏症和帕金森氏致病作用。尽管现有的数学模型忽略了转换的动态,实验表明,转换事件频繁发生可比的时间尺度的中间体和聚合物成熟成长的冷凝,因此不能忽视。我们提出了明确占同时装配和转换的模式。为了描述的转换,我们建议在其中稳定的相位局部地产生由最近邻相互作用中间,然后涂抹内,其方式类似于一维芒硝动力学的实验动机的起始传播机制。我们的分析表明,组装和转换结果的在非平衡临界点竞争时间尺度,分离制度,其中中间体是动力学上不稳定的从一个构象,其中混合中间体积聚。这强烈地影响稳定的生物聚合物阶段的积累率。我们的模型是唯一能够解释实验现象如混合中间体和在标度指数γ,其涉及的全部单体浓度为稳定相的累积率突然变化的形成。这提供了朝向两步生物聚合物成核的一般模型,它可以定量地预测生物关键中间体的浓度和组合物的第一步骤。 (c)2020作者。除其他否则指出的情况外,所有文章内容都是根据Creative Commons atjection(CC)许可证的许可(http://creativecommons.org/licenses/by/4.0/)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号