首页> 外文期刊>Physical chemistry chemical physics: PCCP >First-principles prediction of large thermoelectric efficiency in superionic Li2SnX3 (X = S, Se)
【24h】

First-principles prediction of large thermoelectric efficiency in superionic Li2SnX3 (X = S, Se)

机译:超前Li2SNX3中大热电效率的第一原理预测(X = S,SE)

获取原文
获取原文并翻译 | 示例
           

摘要

Thermoelectric materials create an electric potential when subjected to a temperature gradient and vice versa; hence they can be used to harvest waste heat into electricity and in thermal management applications. However, finding highly efficient thermoelectrics with high figures of merit, zT >= 1, is very challenging because the combination of a high power factor and low thermal conductivity is rare in materials. Here, we use first-principles methods to analyze the thermoelectric properties of Li2SnX3 (X = S, and Se), a recently synthesized class of lithium fast-ion conductors presenting high thermal stability. In p-type Li2SnX3, we estimate highly flat electronic valence bands that produce high Seebeck coefficients exceeding 400 mu V K-1 at 700 K. In n-type Li2SnX3, the electronic conduction bands are slightly dispersive; however, the accompanying electron-acoustic phonon scattering is weak, which induces high electrical conductivity. The combination of a high Seebeck coefficient and electrical conductivity gives rise to high power factors, reaching a maximum of similar to 4.5 mW m(-1) K-2 at 300 K in both n-type Li2SnS3 and Li2SnSe3. Likewise, the thermal conductivity in Li2SnX3 is low as compared to conventional thermoelectric materials, 1.35-4.65 W m(-1) K-1 at room temperature. As a result, we estimate a maximum zT of 1.1 in n-type Li2SnS3 at 700 K and of 2.1 (1.1) in n-type Li2SnSe3 at the same temperature (300 K). Our findings of large zT in Li2SnX3 suggest that lithium fast-ion conductors, typically employed as electrolytes in solid-state batteries, hold exceptional promise as thermoelectric materials.
机译:热电材料在经过温度梯度时产生电位,反之亦然;因此,它们可用于将废热和热管理应用中的废物收获。然而,在高效的优点,ZT> = 1的高效附图中找到高效的热电,是非常具有挑战性的,因为高功率因数和低导热率的组合在​​材料中是罕见的。在这里,我们使用第一原理方法来分析Li2SNX3(X = S和SE)的热电性能,最近合成的锂快速离子导体呈现出高热稳定性。在P型Li2SNX3中,我们估计高度扁平的电子价频带,在700k处产生高400μmVk-1的高塞贝克系数。在N型Li2Snx3中,电子传导带略微分散;然而,伴随的电子 - 声学声子散射较弱,这引起了高电导率。高偏见系数和电导率的组合产生高功率因子,在N型Li2SNS3和Li2SNSe3中达到300k的最大值在300k时达到4.5mM mw(-1)k-2。同样地,与常规热电材料相比,Li2SNX3中的导热率低,在室温下为1.35-4.65Wm(-1)k-1。结果,在相同温度(300k)的N型Li 2 SSE3中,我们在700k和2.1(1.1)中估计在N型Li 2 S 3中的最大Zt。我们在Li2SNX3中的大ZT的发现表明,通常用作固态电池中的电解质的锂快 - 离子导体,保持优异的承诺作为热电材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号