...
首页> 外文期刊>Bulletin of the American Physical Society >APS -APS March Meeting 2017 - Event - First-principles study on the high thermoelectric efficiency originating from ``pudding-mold'' bands in n- and p-type SnSe
【24h】

APS -APS March Meeting 2017 - Event - First-principles study on the high thermoelectric efficiency originating from ``pudding-mold'' bands in n- and p-type SnSe

机译:APS -APS 2017年3月会议-活动-关于高热电效率的第一性原理研究,其源于n型和p型SnSe中的``布丁模''带

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The performance of thermoelectric conversion is evaluated by the dimensionless figure of merit extit{ZT}$=(sigma S^{2}/kappa )T,$ where $sigma $, $S$, $kappa $, and $T$ are the electrical conductivity, thermopower, thermal conductivity, and temperature, respectively. Recently, it has been experimentally found that SnSe exhibits a high extit{ZT}$=$2.6 at 923 K [1]. Its high extit{ZT} is mainly due to the ultralow thermal conductivity. Some theoretical studies have shown that the ultralow thermal conductivity originates from strong anharmonicity of the phonons, and suggested that extit{ZT} could be further increased by doping electrons or holes[2,3]. In the present study, we analyze the thermoelectric properties of the carrier-doped SnSe to reveal the origin of its even higher performance. Using the first-principles calculation and adopting the Boltzmann equation, we obtain the electrical conductivity and the thermopower. We find that the pudding-mold-shaped band structure [4] enhances its thermoelectric performance not only in the hole-doped [2] but also in the electron-doped regime, where the Bloch states at the Fermi level originate from Se $p_{x}$ in the former, and Sn $p_{y}$ in the latter.[1] L.-D. Zhao extit{et al}., Nature extbf{508}, 373 (2014). [2] K. Kutorasinski extit{et al}., Phys. Rev. B extbf{91}, 205201 (2015). [3] R. Guo extit{et al}., Phys. Rev. B extbf{92}, 115202 (2015). [4] K. Kuroki and R. Arita, J. Phys. Soc. Jpn. extbf{76}, 083707 (2007).
机译:热电转换的性能由品质因数的无量纲求值{ZT} $ =(sigma S ^ {2} / kappa)T,$来评估,其中$ sigma $,$ S $,$ kappa $和$ T $为分别是电导率,热功率,热导率和温度。最近,通过实验发现,SnSe在923 K时表现出较高的{ZT} $ = $ 2.6 [1]。其高的{ZT}主要是由于超低的热导率。一些理论研究表明,超低热导率起因于声子的强非谐性,并表明通过掺杂电子或空穴可以进一步提高引出{ZT} [2,3]。在本研究中,我们分析了载流子SnSe的热电特性,以揭示其更高性能的起源。使用第一性原理计算并采用玻尔兹曼方程,我们获得了电导率和热功率。我们发现,布丁模子状的能带结构[4]不仅在空穴掺杂的[2]中而且在电子掺杂的状态中都增强了其热电性能,其中费米能级的布洛赫态源自Se $ p_前者为{x} $,后者为Sn $ p_ {y} $。[1] L.-D. Zhao extit {et al}。,Nature extbf {508},373(2014)。 [2] K. Kutorasinski extit {et al}。,物理学。 Rev.B extbf {91},205201(2015)。 [3] R. Guo extit {et al}。,物理学。版本B extbf {92},115202(2015)。 [4] K. Kuroki和R. Arita,《物理学报》。 Soc。日本。 extbf {76},083707(2007)。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号