首页> 外文期刊>Journal of Agricultural and Food Chemistry >Characterization of Edible Seaweed Harvested on the Galician Coast (Northwestern Spain) Using Pattern Recognition Techniques and Major and Trace Element Data
【24h】

Characterization of Edible Seaweed Harvested on the Galician Coast (Northwestern Spain) Using Pattern Recognition Techniques and Major and Trace Element Data

机译:利用模式识别技术以及主要和微量元素数据表征加利西亚海岸(西班牙西北部)收获的食用海藻

获取原文
获取原文并翻译 | 示例

摘要

Major and trace elements in North Atlantic seaweed originating from Galicia (northwestern Spain) were determined by using inductively coupled plasma-optical emission spectrometry (ICP-OES) (Ba, Ca, Cu, K, Mg, Mn, Na, Sr, and Zn), inductively coupled plasma-mass spectrometry (ICP-MS) (Br and I) and hydride generation-atomic fluorescence spectrometry (HG-AFS) (As). Pattern recognition techniques were then used to classify the edible seaweed according to their type (red, brown, and green seaweed) and also their variety (Wakame, Fucus, Sea Spaghetti, Kombu, Dulse, Nori, and Sea Lettuce). Principal component analysis (PCA) and cluster analysis (CA) were used as exploratory techniques, and linear discriminant analysis (LDA) and soft independent modeling of class analogy (SIMCA) were used as classification procedures. In total, t12 elements were determined in a range of 35 edible seaweed samples (20 brown seaweed, 10 red seaweed, 4 green seaweed, and 1 canned seaweed). Natural groupings of the samples (brown, red, and green types) were observed using PCA and CA (squared Euclidean distance between objects and Ward method as clustering procedure). The application of LDA gave correct assignation percentages of 100% for brawn, red, and green types at a significance level of 5%. However, a satisfactory classification (recognition and prediction) using SIMCA was obtained only for red seaweed (100% of cases correctly classified), whereas percentages of 89 and 80% were obtained for brown seaweed for recognition (training set) and prediction (testing set), respectively.
机译:通过使用电感耦合等离子体发射光谱法(ICP-OES)(Ba,Ca,Cu,K,Mg,Mn,Na,Sr和Zn)确定了源自加利西亚(西班牙西北部)的北大西洋海藻中的主要和微量元素),电感耦合等离子体质谱(ICP-MS)(Br和I)和氢化物发生原子荧光光谱(HG-AFS)(As)。然后使用模式识别技术根据食用海藻的类型(红色,棕色和绿色海藻)及其种类(裙带菜,岩藻,意大利面条,海带,杜尔塞,紫菜和生菜)对食用海藻进行分类。主成分分析(PCA)和聚类分析(CA)被用作探索性技术,线性判别分析(LDA)和类别模拟的软独立建模(SIMCA)被用作分类程序。总共确定了35种可食用海藻样品中的t12元素(20种棕色海藻,10种红色海藻,4种绿色海藻和1个罐装海藻)。使用PCA和CA(对象之间的平方欧氏距离和Ward方法作为聚类程序)观察到样品的自然分组(棕色,红色和绿色类型)。 LDA的应用为棕色,红色和绿色类型的正确分配百分比为100%,显着性水平为5%。但是,仅对于红海藻(正确分类的病例的100%),使用SIMCA获得了令人满意的分类(识别和预测),而对于褐海藻的识别(训练集)和预测(测试集),分别获得了89%和80%的百分比。 ), 分别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号