【24h】

Functional response of hippocampal CA1 pyramidal cells to neonatal hypoxic-ischemic brain damage

机译:海马CA1锥体细胞对新生儿缺氧缺血性脑损伤的功能反应

获取原文
获取原文并翻译 | 示例
           

摘要

Perinatal hypoxic-ischemic (H-I) is a major cause of brain injury in the newborn. The hippocampus is more sensitive to H-I injury than the other brain regions. It is believed that H-I brain damage causes a loss of neurons in the central nervous system. The patterns of neuronal death include apoptosis and necrosis. With regard to the responses of neurons, the neural functional changes should be earlier than the morphologic changes. The aim of the present study is to evaluate the electrophysiological characteristics and the synaptic transmission functions. Seven-day-old Sprague-Dawley rat pups were randomly divided into sham operation and H-I groups. The patch clamp, immunohistochemistry and Western blotting techniques were used to achieve this objective. The results of the study showed a decrease in neuronal excitability and a significant increase in the frequency of spontaneous excitatory postsynaptic currents and the duration of EPSCs in the CA1 pyramidal cells of H-I brain damage rats. The glutamate transporter subtype 1 (GLT-1) expression level of the hippocampal CA1 area in the H-I group was decreased compared with the control. There was no difference in the amplitude of excitatory postsynaptic currents and should be no difference in the expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR), N-methyl-. d-aspartate receptor (NMDAR) and synaptophysin between the control and H-I brain injury group. These results revealed that changes of electrophysiological characteristics and synaptic functions occur instantly after H-I brain damage in the hippocampal pyramidal cells of neonatal rats. The failure to eliminate glutamate should be one of the important factors of excitotoxicity injury on hippocampal CA1 pyramidal cells, while neuronal excitation was not increased in the H-I brain injury model.
机译:围产期缺氧缺血(H-I)是新生儿脑损伤的主要原因。海马比其他大脑区域对H-I损伤更敏感。据信,H-I脑损伤导致中枢神经系统中神经元的损失。神经元死亡的模式包括凋亡和坏死。关于神经元的反应,神经功能的变化应早于形态学的变化。本研究的目的是评估电生理特性和突触传递功能。将7天大的Sprague-Dawley大鼠幼崽随机分为假手术组和H-I组。使用膜片钳,免疫组织化学和蛋白质印迹技术来实现这一目标。研究结果显示,H-1型脑损伤大鼠的CA1锥体细胞中神经元兴奋性降低,自发兴奋性突触后电流频率和EPSC持续时间显着增加。与对照组相比,H-1组海马CA1区的谷氨酸转运蛋白亚型1(GLT-1)表达水平降低。兴奋性突触后电流的幅度没有差异,α-氨基-3-羟基-5-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)N-甲基-的表达也没有差异。对照组和H-I脑损伤组之间的d-天冬氨酸受体(NMDAR)和突触素。这些结果表明,新生大鼠海马锥体细胞中H-I脑损伤后,电生理特性和突触功能立即发生变化。消除谷氨酸的失败应该是对海马CA1锥体细胞兴奋性毒性损伤的重要因素之一,而在H-I型脑损伤模型中神经元兴奋并未增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号